

Hughes Information Technology Corporation
Landover, MD

305-CD-010-001

EOSDIS Core System Project

Release A SDPS Planning
Subsystem Design Specification

for the ECS Project

July 1995

Hughes Information Technology Corporation

Landover, Maryland

Release A SDPS Planning
Subsystem Design Specification

for the ECS Project

July 1995

Prepared Under Contract NAS5-60000
CDRL Item #046

SUBMITTED BY

__
Parag Ambardekar, Release A CCB Chairman Date
EOSDIS Core System Project

Parag N. Ambardekar /s/ 7/27/95

305-CD-010-001

This page intentionally left blank.

iv 305-CD-010-001

Preface

This document is one of sixteen comprising the detailed design specifications of the SDPS and
CSMS subsystem for Release A of the ECS project. A complete list of the design specification
documents is given below. Of particular interest are documents number 305-CD-004, which
provides an overview of the subsystems and 305-CD-018, the Data Dictionary, for those reviewing
the object models in detail. A Release A SDPS and CSMS CDR Review Guide (510-TP-002) is
also available.

The SDPS and CSMS subsystem design specification documents for Release A of the ECS Project
include:

305-CD-004 Release A Overview of the SDPS and CSMS Segment System Design
Specification

305-CD-005 Release A SDPS Client Subsystem Design Specification

305-CD-006 Release A SDPS Interoperability Subsystem Design Specification

305-CD-007 Release A SDPS Data Management Subsystem Design Specification

305-CD-008 Release A SDPS Data Server Subsystem Design Specification

305-CD-009 Release A SDPS Ingest Subsystem Design Specification

305-CD-010 Release A SDPS Planning Subsystem Design Specification

305-CD-011 Release A SDPS Data Processing Subsystem Design Specification

305-CD-012 Release A CSMS Segment Communications Subsystem DesignSpeci-
fication

305-CD-013 Release A CSMS Segment Systems Management Subsystem Design
Specification

305-CD-014 Release A GSFC Distributed Active Archive Center Implementation

305-CD-015 Release A LaRC Distributed Active Archive Center Implementation

305-CD-016 Release A MSFC Distributed Active Archive Center Implementation

305-CD-017 Release A EROS Data Center Distributed Active Archive Center
Implementation

305-CD-018 Release A Data Dictionary for Subsystem Design Specification

305-CD-019 Release A System Monitoring and Coordination Center Implementation

v 305-CD-010-001

Object models presented in this document have been exported directly from CASE tools and in
some cases contain too much detail to be easily readable within hard copy page constraints. The
reader is encouraged to view these drawings on line using the Portable Document Format (PDF)
electronic copy available via the ECS Data Handling System (ECS) at URL http://edhs1.gs-
fc.nasa.gov.

This document is a contract deliverable with an approval code 2. As such, it does not require formal
Government approval, however, the Government reserves the right to request changes within 45
days of the initial submittal. Once approved, contractor changes to this document are handled in
accordance with Class I and Class II change control requirements described in the EOS Configu-
ration Management Plan, and changes to this document shall be made by document change notice
(DCN) or by complete revision.

Any questions should be addressed to:

Data Management Office
The ECS Project Office
Hughes Information Technology Corporation
1616 McCormick Drive
Landover, MD 20785

vi 305-CD-010-001

Abstract

This document describes the Release A CDR design for the SDPS Planning subsystem. It defines
the Planning Subsystem computer software and hardware architectural design, as well as
subsystem design based on Level 4 requirements. The subsystem comprises of two CIs: the
PLANG CSCI and the PLNHW HWCI.

Keywords:

Planning, SDPS, Release A, OMT, PDPS

vii 305-CD-010-001

This page intentionally left blank.

viii 305-CD-010-001

Change Information Page

List of Effective Pages

Page Number Issue
Title Final

iii through xvi Final

1-1 through 1-2 Final

2-1 through 2-2 Final

3-1 through 3-12 Final

4-1 through 4- Final

5-1 through 5-10 Final

A-1 through A-14 Final

AB-1 through AB-2 Final

Document History

Document Number Status/Issue Publication Date CCR Number
305-CD-010-001 Final July 1995 95-0473

ix 305-CD-010-001

This page intentionally left blank.

x 305-CD-010-001

Contents

Preface

Abstract

1. Introduction

1.1 Identification .. 1-1
1.2 Purpose and Scope .. 1-1
1.3 Status and Schedule ... 1-1
1.4 Organization .. 1-1

2. Related Documentation

2.1 Parent Documents ... 2-1
2.2 Applicable Documents... 2-1

3. Subsystem Overview

3.1 Context... 3-1
3.2 Subsystem Overview .. 3-4

3.2.1 Use of COTS within the Planning and Data Processing Subsystems 3-5
3.2.2 Summary of Changes to the Planning Subsystem .. 3-6
3.2.3 Key Design Drivers ... 3-7
3.2.4 Performance .. 3-10
3.2.5 Subsystem Structure ... 3-11

4. PLANG - Production Planning CSCI

4.1 CSCI Overview.. 4-1
4.1.1 PDPS Database .. 4-2
4.1.2 Production Request Editor .. 4-2
4.1.3 Production Planning Workbench .. 4-2
4.1.4 Planning Subscription Editor .. 4-2
4.1.5 Subscription Manager ... 4-3

4.2 CSCI Context .. 4-3
4.3 CSCI Object Model.. 4-5

4.3.1 PGE Profile View ... 4-5
4.3.2 Production Request View ... 4-6

xi 305-CD-010-001

4.3.3 Subscription Submission View ... 4-8
4.3.4 Production Planning View ... 4-8
4.3.5 Resource Management View ... 4-11
4.3.6 Plan Activation View.. 4-14

4.4 Class Descriptions .. 4-16
4.4.1 DpPrScheduler Class ... 4-16
4.4.2 DsClESDTReference Class ... 4-16
4.4.3 DsClESDTReferenceCollector Class ... 4-16
4.4.4 DsClQuery Class... 4-19
4.4.5 DsClSubscription Class ... 4-19
4.4.6 DsCtClient Class... 4-19
4.4.7 DsCtCommand Class ... 4-19
4.4.8 DsCtRequest Class.. 4-19
4.4.9 EcMpMsgPsngCtrl Class .. 4-20
4.4.10 EcMpMsgQueueIn Class .. 4-20
4.4.11 GlUR Class .. 4-20
4.4.12 IoAdAdvertisingSrv_C Class.. 4-20
4.4.13 IoAdServiceAdvertisement Class .. 4-20
4.4.14 IoAdServiceCollection_C Class .. 4-21
4.4.15 MsDAAC Class .. 4-21
4.4.16 MsEvent Class .. 4-21
4.4.17 MsManager Class ... 4-21
4.4.18 MsMgCallbacks Class ... 4-21
4.4.19 MsUsProfile Class .. 4-22
4.4.20 PlActivePlan Class.. 4-22
4.4.21 PlActivities Class ... 4-24
4.4.22 PlActivity Class ... 4-26
4.4.23 PlAddressFile Class .. 4-27
4.4.24 PlApplication Class... 4-28
4.4.25 PlComputer Class ... 4-30
4.4.26 PlDBMSProxyAgent Class .. 4-31
4.4.27 PlDBMSProxyAgentCallbacks Class ... 4-32
4.4.28 PlDPR Class ... 4-33
4.4.29 PlDPRs Class ... 4-37
4.4.30 PlDataGranule Class .. 4-38
4.4.31 PlDataGranule Class ... 4-41
4.4.32 PlDataScheduled Class ... 4-43
4.4.33 PlDataSource Class... 4-44
4.4.34 PlDataType Class ... 4-45

xii 305-CD-010-001

4.4.35 PlDataTypeCatalogue Class ... 4-48
4.4.36 PlDataTypeReq Class .. 4-49
4.4.37 PlDataTypes Class ... 4-50
4.4.38 PlDiskPartition Class ... 4-51
4.4.39 PlFOSPrecictedArrival Class ... 4-52
4.4.40 PlGroundActivity Class ... 4-53
4.4.41 PlGroundEvent Class ... 4-55
4.4.42 PlGroundEvents Class .. 4-57
4.4.43 PlOutputYield Class.. 4-59
4.4.44 PlPGE Class ... 4-60
4.4.45 PlPGEActivity Class .. 4-62
4.4.46 PlPGEProfile Class .. 4-64
4.4.47 PlPerformance Class .. 4-65
4.4.48 PlPlan Class ... 4-67
4.4.49 PlPlanASCIIReportFile Class... 4-69
4.4.50 PlPlanBinaryReportFile Class ... 4-70
4.4.51 PlPlanGenerationUI Class .. 4-71
4.4.52 PlPlanMetadataFile Class .. 4-72
4.4.53 PlPlanningWorkbenchUI Class .. 4-73
4.4.54 PlProductionPlannersUI Class ... 4-74
4.4.55 PlProductionRequest Class .. 4-76
4.4.56 PlProductionRequestUI Class .. 4-77
4.4.57 PlPublishScript Class ... 4-78
4.4.58 PlPublishedPlan Class .. 4-79
4.4.59 PlResource Class... 4-79
4.4.60 PlResourceConfigeration Class ... 4-80
4.4.61 PlResourceManager Class ... 4-81
4.4.62 PlResourceManagersUI Class .. 4-82
4.4.63 PlResourceRequirement Class ... 4-83
4.4.64 PlRoutineArrival Class .. 4-85
4.4.65 PlScheduledArrival Class .. 4-86
4.4.66 PlString Class.. 4-87
4.4.67 PlSubscriptionManager Class ... 4-87
4.4.68 PlSubscriptionManagerCallbacks Class .. 4-89
4.4.69 PlSubscriptionSubmitIF Class ... 4-90
4.4.70 PlTimeLineDisplay Class .. 4-91
4.4.71 PlTimeScheduled Class .. 4-92
4.4.72 PlUser Class ... 4-93
4.4.73 PlUserParameters Class .. 4-94

xiii 305-CD-010-001

4.5 PLANG Dynamic Model .. 4-96
4.5.1 PGE Profile ... 4-96
4.5.2 Production Requests... 4-98
4.5.3 Data Availability Scenario ... 4-104
4.5.4 Subscription Submission Scenario ... 4-107
4.5.5 Subscription Withdrawal Scenario .. 4-109
4.5.6 Ground Event Scenario ... 4-111
4.5.7 Plan Creation Scenario ... 4-114
4.5.8 Deleting a Plan Scenario .. 4-117
4.5.9 Publishing a Plan Scenario ... 4-119
4.5.10 Building the Resource Configuration Scenario ... 4-120
4.5.11 Plan Activation Scenario... 4-122
4.5.12 Cancelling a Plan Scenario .. 4-124
4.5.13 Statusing a Plan Scenario ... 4-126
4.5.14 Subscription Manager Startup Scenario ... 4-130
4.5.15 Subscription Notification Scenario .. 4-131
4.5.16 Subscription Manager Shutdown Scenario .. 4-133
4.5.17 User Logon and Authentication .. 4-135

4.6 CSCI Structure ... 4-137
4.6.1 Planning Subscription Editor CSC ... 4-138
4.6.2 Production Request Editor CSC ... 4-138
4.6.3 Subscription Manager CSC .. 4-139
4.6.4 Production Planning Workbench CSC ... 4-139
4.6.5 Planning Object Library ... 4-140
4.6.6 PDPS Database CSC .. 4-151

4.7 PLANG CSCI Management and Operation.. 4-153
4.7.1 PLANG CSCI Operation .. 4-153
4.7.2 System Management Strategy .. 4-157
4.7.3 Operator Interfaces ... 4-159
4.7.4 Reports ... 4-162

5. Planning Subsystem Hardware CI

5.1 Hardware Design Drivers .. 5-1
5.1.1 Key Trade-Off Studies and Prototypes .. 5-1
5.1.2 Sizing and Performance Analysis .. 5-2
5.1.3 Scalability, Evolvability, Migration to Release B .. 5-4

5.2 HWCI Structure ... 5-5
5.2.1 Connectivity... 5-6

xiv 305-CD-010-001

5.2.2 HWCI Components ... 5-7

5.3 Failover and Recovery Strategy... 5-8
5.4 Pertinent References ... 5-10

Figures

3.1-1. Context Diagram ... 3-2
3.2-1 Basic Capability of AutoSys.. 3-5
3.2-2. Graphical Schedule displays provided by AutoXpert ... 3-6
4.1-1. CSCI Overview .. 4-1
4.2-1. CSCI Event Flow Context Diagram .. 4-3
4.3-1. PGE Profile Object Model ... 4-7
4.3-2. Production Request Object Model ... 4-9
4.3-3. Subscription Submission Object Model ... 4-10
4.3-4. Production Planning Object Model ... 4-12
4.3-5. Resource Management Object Model .. 4-13
4.3-6. Plan Activation Object Model ... 4-15
4.3-7. Subscription Manager Object Model ... 4-17
4.3-8. DBMS Proxy Agent Object Model .. 4-18
4.5-1. PGE Profile Entry Event Trace .. 4-99
4.5-2. PGE Profile Modification Event Trace .. 4-100
4.5-3. PGE Profile Deletion Event Trace ... 4-101
4.5-4. Production Request Entry Event Trace .. 4-105
4.5-5. Production Request Deletion Event Trace ... 4-106
4.5-6. Data Availability Event Trace ... 4-108
4.5-7. Subscription Submission Event Trace ... 4-110
4.5-8. Subscription Withdrawal Event Trace ... 4-112
4.5-9. Ground Event Entry Event Trace ... 4-115
4.5-10. Plan Creation Scenario .. 4-118
4.5-11. Plan Publication Event Trace .. 4-121
4.5-12. Resource Configuration Event Trace... 4-123
4.5-13. Plan Activation Event Trace .. 4-125
4.5-14. Plan Cancellation Event Trace... 4-127
4.5-15. Plan Statusing Event Trace .. 4-129
4.5-16. Subscription Manager Startup Event Trace. ... 4-132
4.5-17. Subscription Notification Event Trace .. 4-134
4.5-18. Subscription Manager Shutdown Event Trace ... 4-136
4.6-1. Delphi Resource Model ... 4-149
4.6-2. Delphi Scheduler Model .. 4-150
4.6-3. Database Interface Classes ... 4-154

xv 305-CD-010-001

4.6-4. Database Interface Object Model.. 4-155
5-1. Planning Block Diagram... 5-5
5-2. Planning Generic Network Connectivity ... 5-6
5-3. Primary and Secondary Server Concept Overview .. 5-9

Tables

Table 3.1-1.Planning Subsystem Interfaces.. 3-3
Table 3.2-1.TRMM Release Planning Workload .. 3-10
Table 4.2-2.CSCI Event Flow Summary ... 4-4
Table 4.5-1.Production Planning CSCs .. 4-138
Table 5-1. PLNHW Logical Components and Equipment Classes .. 5-7
 Table A-1. Requirements Trace.. A-1

Appendix A.

Abbreviations and Acronyms

xvi 305-CD-010-001

This page intentionally left blank.

1-1 305-CD-010-001

1. Introduction

1.1 Identification
This Release A SDPS Planning Subsystem Design Specification for the ECS Project, Contract
Data Requirement List (CDRL) Item 046, with requirements specified in Data Item Description
(DID) 305/DV10, is a required deliverable under the Earth Observing System Data and
Information System (EOSDIS) Core System (ECS), Contract NAS5-60000. This publication is
part of a series of documents comprising the Science and Communications Development Office
design specification for the Communications and System Management segment (CSMS) and the
Science and Data Processing Subsystem (SDPS) for Release A.

1.2 Purpose and Scope
The Release A SDPS Planning Subsystem Design Specification defines the progress of the design.
It defines the Planning Subsystem computer software and hardware architectural design, as well
as subsystem design based on Level 4 requirements.

This document reflects the June 21, 1995 Technical Baseline maintained by the contractor
configuration control board in accordance with ECS Technical Direction No.11, dated December
6, 1994.

1.3 Status and Schedule
This submittal of DID 305/DV10 meets the milestone specified in the Contract Data Requirements
List (CDRL) of NASA Contract NAS5-60000. A previous version of this submittal was reviewed
during the SDPS Preliminary Design Review (PDR) and reflects changes to the design which re-
sulted from that review. The PDR also triggered a number of follow up actions in response to Re-
view Item Discrepancies (RID) the results of which have been incorporated into this Critical
Design Review (CDR) version of this document.

1.4 Organization
The document is organized to describe the Planning subsystem design as follows:

Section 1 provides information regarding the identification, scope, status, and organization of this
document.

Section 2 provides a listing of the related documents, which were used as source information for
this document.

Section 3 provides an overview of the subsystem, focusing on the high-level design concept. This
provides general background information to put the Planning subsystem into context.

Sections 4 contain the structure of the computer software configuration item (CSCI) comprising
the Planning subsystem.

Section 5 contains the hardware configuration item (HWCI) design of the Planning subsystem.

The section Abbreviations and Acronyms contains an alphabetized list of the definitions for
abbreviations and acronyms used in this volume.

1-2 305-CD-010-001

This page intentionally left blank.

2-1 305-CD-010-001

2. Related Documentation

2.1 Parent Documents
The parent document is the document from which the scope and content of this Planning Sub-
system Design Specification is derived.

194-207-SE1-001 System Design Specification for the ECS Project

2.2 Applicable Documents
The following documents are referenced within this Planning Subsystem Design Specification, or
are directly applicable, or contain policies or other directive matters that are binding upon the con-
tent of this volume.

209-CD-001-001 Interface Control Document Between EOSDIS Core System (ECS) and
the NASA Science Internet

209-CD-002-001 Interface Control Document Between EOSDIS Core System (ECS) and
ASTER Ground Data System

209-CD-003-001 Interface Control Document Between EOSDIS Core System (ECS) and
EOS-AM Project for AM-1 Spacecraft Analysis Software

209-CD-004-001 Data Format Control Document for the Earth Observing System (EOS)
AM-1 Project Data Base

209-CD-005-002 Interface Control Document Between EOSDIS Core System (ECS) and
Science Computing Facilities (SCF)

209-CD-006-002 Interface Control Document Between EOSDIS Core System (ECS) and
National Oceanic and Atmospheric Administration (NOAA) Affiliated
Data Center (ADC)

209-CD-007-002 Interface Control Document Between EOSDIS Core System (ECS) and
TRMM Science Data and Information System (TSDIS)

209-CD-008-002 Interface Control Document Between EOSDIS Core System (ECS) and
the Goddard Space Flight Center (GSFC) Distributed Active Archive
Center (DAAC)

209-CD-009-002 Interface Control Document Between EOSDIS Core System (ECS) and
the Marshall Space Flight Center (MSFC) Distributed Active Archive
Center (DAAC)

209-CD-011-002 Interface Control Document Between EOSDIS Core System (ECS) and
the Version 0 System

305-CD-002-002 Science Data Processing Segment (SDPS) Segment Design Specifica-
tion for the ECS Project

305-CD-003-002 Communications and System Management Segment (CSMS) Design
Specification for the ECS Project

2-2 305-CD-010-001

308-CD-001-004 Software Development Plan for the ECS Project

313-CD-004-001 Release A CSMS/SDPS Internal Interface Control Document for the
ECS Project

423-41-03 Goddard Space Flight Center, EOSDIS Core System (ECS) Contract
Data Requirements Document

3-1 305-CD-010-001

3. Subsystem Overview

The Planning subsystem is responsible for supporting operation staff in managing the data
production activities at a site. The Planning subsystem assists the operations staff in performing
two major functions:

• defining the data processing tasks to be performed at a site; and

• generating efficient plans for the scheduling of those tasks.

In addition the Planning subsystem is responsible for coordinating the production with the Data
Server and Data Processing subsystems to achieve a highly automated production system.

3.1 Context
A context diagram illustrating the relationships between the Planning subsystem and other
subsystems is shown in Figure 3.1-1, and summarized in Table 3.1-1.

The context diagram shows only those interfaces which are a part of the Tropical Rainfall
Measuring Mission (TRMM) release Earth Observing System (EOS) Data and Information System
(EOSDIS) Core System (ECS). Interfaces that provide additional capabilities will be described in
the detailed design document at the appropriate future release. Most notably the interface for on-
demand requests from the Science Data Server will be developed in the AM-1 release.

The Planning subsystem interfaces with the Algorithm Integration and Test Tools Computer
Software Configuration Item (CSCI) within the Data Processing subsystem for information on
Product Generation Executives (PGE). The information that is collected is referred to as a PGE
Profile. This includes information on the PGE executable, the input data type(s) it requires, the
output data type(s) it generates, the PGE resource requirements - hardware platform, memory, disk
storage etc. The Planning subsystem provides storage for the profiles to permit the Algorithm
Integration and Test Tools to insert, retrieve and modify PGE information.

The primary interface of the Planning subsystem with the Data Processing subsystem is to describe
the PGEs that need to be run in order to fulfill the production goals. A Data Processing Request
(DPR) describes a run of a PGE to the Data Processing subsystem. A DPR describes the specific
input granules, output filenames, and run-time parameters for a PGE, as well as dependencies and
target run-times. The Data Processing subsystem provides status and processing completion
information to the Planning subsystem.

The Planning User Interface provides a means of human interaction with the Planning Subsystem.
Through this interface a user can enter Production Requests. A Production Request describes an
order for data that is to be produced by the Data Processing subsystem. Production Requests may
signify the need for processing of new data (Standard Production Requests, a.k.a. standing orders)
or the need for the reprocessing of data (Reprocessing Production Requests). The planning
subsystem takes these Production Requests and uses the PGE profile information to work out the
Data Processing Requests that will be required to fulfill the Production Request. The Planning User
Interface is also used to issue commands to initiate plan creation, plan activation and the cancelling
of a plan, as well as providing reports / status of progress within a plan.

3-2
305-C

D
-010-001

Data Server

Data
Processing

Production
Scheduler
(human)

MSS

Planning
Subsystem

Ingest

Planning Commands
Create Plan Command, Activate Plan Command, Cancel Plan Command,

Update Plan Command

Planning Command Response
Production Request Response, Create Plan Command Response,

Active Plan Command Response, Cancel Plan Command Response

Scheduling Commands
Schedule Job Command, Cancel Job Command, Update Job Command,

Release Job Command

Interoperability

Planning Command Responses,
Plan Display

Planning Commands,
Production Request

Subscription
Notification

Subscription

Systems Management Information
(Fault, Configuration, Accounting,

Performance, Security)

Lifecycle Commands
(Startup, Shutdown)

DPR Information,
Scheduling Commands,
PGE Profile Information

Subscription,
Data Query,

Candidate Plans,
Active Plans

Processing Status,
PGE Profile Information

Subscription Notification,
Granule Information

Advertisement

Figure 3.1-1. Context Diagram

3-3 305-CD-010-001

The Planning subsystem queries the Data Server holdings for existence of data required in some
reprocessing. The Data Server responds with granule information (identification, metadata,
location). The Data Server also provides the subscription services needed by Planning to determine
when new data are available for processing. The Planning subsystem generates the subscriptions
to be entered into the Data Server. The Data Server sends a notification when data that fulfill the
subscription are inserted into the Data Server.

The Ingest subsystem also provides a subscription service (via the Ingest Data Server) for
notification of the arrival of L0 data from SDPF. The Advertising CSCI within the subsystem
provides the advertisement data that is required by the Planning subsystem in order to generate a
subscription.

The Planning subsystem uses the Document Data Server within the Data Server subsystem to store
production plans. The Document Data Server then make those plans available to the user
community.

The Planning Subsystem also has an interface to the Management Subsystem (MSS). The
Planning subsystem is responsible for sending MSS fault management data, accounting data,
security data, and performance data.

Table 3.1-1. Planning Subsystem Interfaces (1 of 2)

Source Destination Data Types Data
Volume

Frequency

Production
Scheduler

Planning Production request low as required

Production
Scheduler

Planning create plan command low as required

Production
Scheduler

Planning activate plan command low as required

Production
Scheduler

Planning update plan command low as required

Production
Scheduler

Planning cancel plan command low as required

Planning Production
Scheduler

Production request
response

low in response to standard
production request

Planning Production
Scheduler

create plan command
response

low in response to create plan
command

Planning Production
Scheduler

activate plan command
response

low in response to activate plan
command

Planning Production
Scheduler

cancel plan command
response

low in response to cancel plan
command

Planning Production
Scheduler

plan (display) medium as required

Planning Data
Processing

data processing
request information

low in response to activating a plan

Planning Data
Processing

schedule job command low in response to activating plan

3-4 305-CD-010-001

In the table, where an exact number is unavailable, the data volume is estimated as low (less than 1 MB), medium (be-
tween 1 MB and 1 GB), or high (greater than 1 GB) per use defined in the frequency column . The frequency information
will be updated as the interfaces are fully defined.

3.2 Subsystem Overview
This section describes the key drivers for the Planning subsystem and how the design responds to
them. The section starts with a discussion of the use of Commercial-off-the-shelf (COTS) within
Planning and Data Processing and describes the key changes to the Planning subsystem since the
preliminary design specification, brought about by the selection of COTS.

Source Destination Data Types Data
Volume

Frequency

Planning Data
Processing

cancel job command low in response to activating plan

Planning Data
Processing

release job command low in response to activating plan

Planning Data
Processing

update job command low in response to activating plan

Data Processing Planning Processing status low in response to an update job
command

Data Processing
(AI&T)

Planning PGE profile information low as required

Planning Data
Processing
(AI&T)

PGE profile information low as required

Planning Data Server
(Document
Data Server)

candidate plan, active
plan

medium as required for archiving

Planning Data Server data query low as required

Planning Data Server subscription low as required

Data Server Planning subscription notification low when input data are available

Data Server Planning granule information low in response to query

Planning Ingest subscription low as required

Ingest Planning subscription notification low one/few times per day as L0 data
arrives from SDPF

Planning MSS fault management low as required

Planning MSS configuration
management

low as required

Planning MSS accounting data low as required

Planning MSS security data low as required

Planning MSS performance data low as required

MSS Planning lifecycle commands low as required

Table 3.1-1. Planning Subsystem Interfaces (2 of 2)

3-5 305-CD-010-001

3.2.1 Use of COTS within the Planning and Data Processing Subsystems

Between Preliminary Design Review (PDR) and Critical Design Review (CDR) the Planning and
Data Processing subsystems have focused much attention on the evaluation and selection of COTS.
Managing systems involving large numbers of processing tasks is not a problem unique to ECS;
robust vendor provided software exists to facilitate a high degree of automation in these systems.
When carefully selected, COTS significantly reduces both the schedule and technical risks and can
provide capabilities that would otherwise take considerable effort to develop. The evaluation and
selection process is described in the Data Processing Subsystem Design Specification. It is
important to emphasize that the selection of COTS that provides maximum benefits to ECS has
resulted in a change to the PDR architecture and design of both the Planning and Data Processing
subsystems. This will be outlined in Section 3.2.2.

3.2.1.1 Brief Description of Job Scheduling COTS

The main focus of COTS evaluation within the Planning and Data Processing subsystems has been
to select a Job Scheduling Engine to provide the automated production management capabilities
required. The COTS that have been selected is a combination of packages called AutoSys and
AutoXpert.

AutoSys provides robust capabilities for managing schedules of Jobs. Jobs are defined within the
AutoSys database and are initiated on remote machines when the dependencies of a Job have been
met, and the resources required to complete the Job are available. AutoSys basically comprises of
three components:

• AutoSys RDBMS - contains the job definition and dependency information;

• Event Processor - reads DBMS to determine actions to be taken; and

• AutoSys Remot Agent - initiates a job on a remote process.

The basic production sequence of AutoSys is shown diagrammatically in Figure 3.2-1.

Event
Processor

AutoSys
RDBMS

Remote
Agent

UNIX
JobPDPS

Server

Science
Processor

RDBMS

- Events
- JobDef

Event Proc.

- Read D BMS
- Determine
 Actions
- Initiate Job

Remo te Agen t

- Receive
 Instructions
- Initiates Job
- Waits for
 Exit Code
- Completes
 and Exits

U nix Job

- Run Unix
 command
- Completes
 and Exits

1

2

3

4

Figure 3.2-1. Basic Capability of AutoSys

3-6 305-CD-010-001

AutoXpert provides advanced capabilities for monitoring the schedule of Jobs and predicting their
completion time. The graphic display provided by the AutoXpert provides for three views onto the
production schedule:

• Timeline or GANTT style view, showing the current status according to schedule and
estimated completion times for tasks;

• Job Network or PERT style view, showing the current status according to the task
dependencies; and,

• Resource style view, showing the current status according to allocation of tasks to
machines.

AutoXpert also provides capabilities to perform “what-if” scenarios on the schedule to predict the
impact of failures within the job network on the downstream dependent tasks.

Figure 3.2-2. Graphical Schedule displays provided by AutoXpert

3.2.2 Summary of Changes to the Planning Subsystem

As described in the COTS evaluation paper, the goal of the selection was to obtain the packages
which provide the maximum of the capabilities required by the ECS. No COTS solution exists to
cover the entire ECS Planning and Data Processing subsystems. The design presented in the rest
of this document describes those areas which are ECS specific or areas where the requirements can
not be covered by COTS. In the area where the requirements can not currently be covered by COTS
it should be emphasized that the ECS is also actively pursuing the vendors to improve their
capabilities.

The basic capabilities of the Planning subsystem described in the preliminary design have not
changed. Rather, these capabilities have been enhanced by the AutoSys/AutoXpert selection. What
has changed is the division of responsibilities within the Planning and Data Processing subsystems.
A major goal in re-architecting the system after the selection was to ensure that the interfaces to

AutoSys
RDB MS

job_1
job_2

job_3
job_9

job_8

job_4
job_6

Schedule View Job Dependency View Resource View

• Graphical Monitoring of Production Schedule
• Predictions for Completion Times
• Co lor coded status
• Many levels of abstraction
• What If - downstream impact analysis

HOST1 HOST2

HOST3 HOST4

3-7 305-CD-010-001

COTS are within one subsystem. This ensures that interfaces to the COTS can be appropriately
encapsulated to give later flexibility augmenting, modifying or replacing the underlying COTS as
ECS matures.

The Job Scheduling COTS is appropriately made a component of the Data Processing subsystem,
which accounts for the reallocation of some of the Planning capabilities. The key changes to the
Planning design since PDR are within the Production Management capabilities. The two main
activities performed here were:

1) to coordinate the production by providing a Data Processing Request to the Data Processing
subsystem when all the data required for the task are present at the Data Server,

2) to provide a display of the active production, and it's status according to the plan.

These two capabilities have been split into separate CSCs. The (new) subscription manager CSC,
which is part of this subsystem, provides the first of these capabilities. The graphic capabilities of
AutoXpert in the Data Processing subsystem provides for the second.

Other changes that have been brought on due to the selection of AutoSys and AutoXpert pertain to
the sequence of events “activating” a plan. This now involves rolling a portion of the “long term”
plans generated in the Planning subsystem into AutoSys. The design and scenarios that describe
this procedure are presented in Section 4 of this document.

3.2.3 Key Design Drivers

As outlined in the overview the planning subsystem has three main responsibilities:

• Defining the goals for data production,

• Preparing plans for production, and

• Coordinating the production from those plans.

Each of these areas are discussed in turn in order to describe how the subsystem responds to the
key drivers in these areas.

3.2.3.1 Defining Production Goals

3.2.3.1.1 PGE Profiles

The Planning subsystem stores a description of the PGE in order to be able to determine the correct
PGEs and associated input required to generate a product. Each PGE has individual data
requirements. These data requirements are captured within the PGE Profile to allow the Planning
subsystem to select the appropriate data for a PGE either from the Data Server (in the case of
reprocessing) or from its own predictions of data availability (in the case of standard production).
The PGE profile is a key component of the Planning subsystem that allows the Planning subsystem
to determine which PGEs have to be run to create a given data set (the term Data Processing
Requests is used within the ECS to describe an individual run of a PGE).

3.2.3.1.2 Activation Rules

There is a fair degree of diversity in the scheduling characteristics of PGEs that are being devel-
oped for ECS. The most standard category of PGE describes those that require a well defined pe-
riod of data as input and produce one or more output data products. For example, the CERES

3-8 305-CD-010-001

subsystem 1 geolocation and earth radiance calibration PGE requires one days worth of L0 data
and ephemeris data and produces a single product file of bidirectional scan data, as well as 24 files
of instrument earth scans, each containing 1 hour of data. However, there are many other categories
with more complex scheduling requirements (PGEs scheduled per orbit, PGEs that mosaic data
into geographical tiles, PGEs with alternative data sets that are determined at run time). These
types of PGE have been characterized for the ECS through the work of the Ad Hoc Working Group
on Production (AHWGP) and are described in terms of activation rules.

Not all of the activation rules will be supported within the Planning subsystem at the TRMM Re-
lease of ECS. The maturity of the PGE definitions as well as schedule constraints make it suitable
to develop the capabilities incrementally. Fortunately object oriented methods permit management
of this in a well defined manner; the different PGE types are modeled within a “specialization” hi-
erarchy. Each modeled PGE class containing its own methods determining when it will be sched-
uled. This allows the Planning subsystem to develop the key abstractions required to support the
CERES and LIS processing algorithms, and to add further capabilities at later releases.

3.2.3.1.3 Production Requests

The ECS supports both routine production (at this release) and ad-hoc or on-demand production
(at next release). The goal of ECS is to produce science data sets to facilitate earth science research.
Consistently generated data spanning long time frames are required for much of this research;
therefore, many of the tasks performed within the data processing subsystem will be highly routine
with the same task being performed (albeit on different data) a large number of times per month.
As described above, the formulation of a Data Processing Request is a non-trivial task, and
therefore a high degree of automation is required to aid in this process. The Production Request
is a key abstraction which describes an “order” for the generation of a data set over a period of time.
The Production Request is used along with the PGE profile to generate the Data Processing
Requests; typically one production request will generate many data processing requests. The
Planning subsystem will determine a default PGE to generate this product; however, this
predetermination may be overridden within the Production Request. Similarly, user parameters
may be provided to override their defaults defined within the PGE profile. In addition, the Planning
subsystem provides the capabilities to review and modify the individual Data Processing Requests
defined from the Production Request to ensure that the correct task is defined to achieve the
production goal. Not all Production Requests have to be put into production, Production Requests
can be defined to describe backup options for processing. On identification of a problem within the
production chain, the tasks defined for a backup Production Request may be quickly scheduled.

3.2.3.2 Preparing Plans for Production

3.2.3.2.1 Planning

The ability to generate production plans is important to both operations and users for the following
reasons:

•

Staffing Projections: A long term projection describing the data products that will be
generated at a site allows organizations to manage staffing to support the anticipated
production, for example, to cover on-site or off-site QA requirements.

3-9 305-CD-010-001

• Disconnects: Dependencies on data not planned for production can be identified, which
then allows corrective steps to be taken.

• Efficiency: Proper organization of the data production activities within a plan ensures that
the production will utilize resources in an efficient manner.

There is no explicit planning horizon that is hard coded into the Planning subsystem software. The
system is sized to support generating a number of candidate plans on the order of a month in
advance.

3.2.3.2.2 Publishing Plans

The Planning subsystem provides the capability to publish plans that are generated at a site. The
Document Data Server is the most appropriate repository for these plans, since the plans can then
be made available to WWW access. The published plans will also be stored within a WAIS
database so that, using a simple HTML forms interface, a user may select the plans for a specific
period. A small set of metadata will describe the plans, to allow the user to select a plan based on
period, data product types which are scheduled in the plan, as well as operator comments. A
number of plan formats will be stored within the Document Data Server including a simple ASCII
report as well as a more electronically parsable format. The ability to include meaningful graphics
within another possible format will be investigated.

In future releases the ability to subscribe to plans will be supported so that users may be
automatically alerted to delays in production. Until that point a simple script will be provided to
inform a prepared list of recipients to changes of Plans.

3.2.3.3 Managing the Production

3.2.3.3.1 Schedule/Data Driven Production

The plans generated in the Planning subsystem describe a prediction of the activities that will occur
in the Data Processing subsystem. This prediction is only a forecast of the activities that will occur
and a recipe for the production under nominal conditions. It is important to emphasize that the
production isn't driven directly from the plan. As an example, if a PGE is predicted to start at 3.00
in the afternoon it doesn't mean that the PGE will be executed in the Data Processing subsystem at
3.00 precisely. The Planning subsystem always ensures that the data are present within the system
before an activity is released to run. The Data Processing subsystem ensures that all of the required
resources are available to permit that activity to complete. Jobs are queued within the Data
Processing subsystem so that (within the constraints of priority and job dependencies) the
resources will be kept efficiently occupied.

3.2.3.3.2 Using the Plan

There are many events that can impact a plan: delays in data arrival, poor performance of system
components, etc. There is no need to replan in circumstances like these. The Planning and Data
Processing architecture and design are robust to many fault situations. A replan is only really
required when the production goals need to be redefined to accommodate an unanticipated
circumstance. For example, a repeated failure within the science data processing might indicate
that it would be appropriate to switch from standard production to concentrate on some
reprocessing objectives.

3-10 305-CD-010-001

As previously stated, plans generated in the Planning subsystem describe a prediction of the
activities that will occur in the Data Processing subsystem. The system is tolerant to changes in
schedule, but these changes usually indicate a circumstance that needs to be brought to the attention
of the operators. The forecasts provided by the Planning subsystem are used within the Data
Processing subsystem to define alarms to alert the operator of deviations against the schedule.
Delays in the arrival of data, which may not provoke any exception in the system that would be
identified as an error, will thus still be noticed and flagged.

3.2.3.3.3 Bypassing the Plan

It is understood that, especially during early mission activities, it is frequently desirable to be able
to schedule jobs individually. Operators require the capability to insert a job into the stream without
necessarily planning this task. The net result of inserting a job into the production stream in an ad-
hoc manner is that the forecast times for completion as determined by Planning may no longer be
accurate. However, the benefits that this capability bring are clear. The planning subsystem will
permit authorized operations staff to enter a Production Request and schedule the resulting Data
Processing Requests to the Data Processing subsystem.

3.2.3.4 Distribution of Planning Capabilities

3.2.3.4.1 SCF access to Planning Capabilities

It is acknowledged that, the definition of Production Requests - specifying the data processing
goals - is tightly coupled to science objectives of calibration and validation of instruments and
algorithms, especially during early mission life. Since the responsibility of production ultimately
resides with the Distributed Active Archive Center (DAAC), there is no intent to distribute the
Planning subsystem capabilities away from the DAAC. However, to encourage the collaboration
between the different teams with stakes in the production of science data, the Planning subsystem
capabilities can be made available to remote access. Kerberized remote login procedures for
special users and limited access permissions to the Planning subsystem database tools will ensure
that DAACs can maintain secure authority over use of these capabilities.

3.2.4 Performance

The Planning subsystem design has been prepared to meet the overall performance objectives of
the TRMM Release time period. This is accomplished through the design of both the software and
hardware. An estimate of the daily average of TRMM-related processing jobs to be planned,
scheduled has been extracted from the Technical Baseline and presented in the table below.

Table 3.2-1. TRMM Release Planning Workload
TRMM Processing PGEs Processing Location Activations per Day
CERES (12 SubSystems) LaRC 61.02

LIS MSFC 14.56

3-11 305-CD-010-001

An assessment of the performance associated with this workload level has been performed which
indicates that a relatively small server could adequately support this activity at both locations. The
final design will reflect the ECS AM-1 Release (B) workload level which is more challenging for
the Planning Subsystem, but certainly within the range of available technology. This final design
will be performed after the AutoSys/AutoXpert COTS package has been installed at the EDF with
the associated Sybase database server and benchmarked with typical workloads to insure adequate
performance for operations. It is felt that this is the most prudent approach considering the
importance associated with the planning COTS within the Planning subsystem. It is also estimated
that the raw data storage requirements for the TRMM Release for the purposes of planning are of
the order of 2.2 Mbytes at LaRC and 0.5 Mbytes at MSFC. The design for these locations will
also be sized to accommodate the ECS AM-1 Release rather than the TRMM Release capacities.

In terms of the more hardware specific RMA requirements, the design incorporates redundant
servers for planning purposes with mirrored disks to contain the Planning database that supports
both the Planning Subsystem and the Processing Subsystem. This is to insure the uninterrupted
management of the planning and processing activity, and will insure that the mean time to restore
service will be well within the 30 minute recovery time.

In addition, the design of the Planning and Data Processing subsystems has been prepared to
minimize needless disk I/O by planning science data processing jobs to occur such that the data
output from one PGE which is required for input by a second independent PGE is retained after the
end of the first PGE and made available as input to the second PGE. In this way needless disk I/O
and network loading is avoided, insuring that the systems performance goals can be met with the
least cost.

3.2.5 Subsystem Structure

The Planning subsystem consists of two CIs: the Production Planning CSCI and the Production
Planning HWCI. The Planning CSCI consists of software to meet the subsystem requirements. The
Planning HWCI consists of the hardware resources to support the Planning software.

3-12 305-CD-010-001

This page intentionally left blank.

4-1 305-CD-010-001

4. PLANG - Production Planning CSCI

4.1 CSCI Overview
The Production Planning CSCI consists of a number of utilities and server applications as shown
in Figure 4.1-1. The distinction between these two classes of programs is useful when describing
the software design:

• Utilities are programs that perform well defined tasks and are invoked at the operator's
requests. A utility is usually exited when the task is complete; the system does not depend
on the utility being active at any given time. As an example, a mail editor is a common
utility program, invoked whenever a user wishes to generate a mail message.

• Servers are programs that perform ongoing tasks and have to be active at all times for the
subsystem to carry out its allocated functions. An example here is the mail daemon; the
mail won't be delivered unless the daemon is running.

Figure 4.1-1. CSCI Overview

The allocation of the Planning subsystem capabilities to distinct applications accounts for the need
to provide distinct interfaces for distinct activities, and to restrict access to planning functions to
classes of users. The applications define an integrated set of tools with well-defined functions to

Utility App licat ion

Se rve r App lication

Produ ction
Reque st

Edito r

S ubscrip tion
Ma nag er

PDPS Datab ase

Production
Plann ing

Wo rkbe nch

Plann ing
S ubscription

Su bmitta l

U tility App licat ion

Se rve r App lication

4-2 305-CD-010-001

supplement the COTS components. The allocation of capabilities to applications within the
Planning CSCI also accounts for the need to permit independent development of the components
as the capabilities of the ECS evolve. The purpose of each application is briefly outlined below.

4.1.1 PDPS Database

At the heart of the Planning CSCI is the Planning and Data Processing System (PDPS) Database
(and the implied database server). This provides the persistent storage for data and facilitates the
sharing of this data between the applications. The database also provides security, fault tolerance,
and marshals request for concurrent access to data. The objects which are built from the persistent
data within the PDPS database are indicated within the object design. The schema for the database
has been driven from the object model and is described in the SDPS Database Design and Schema
Specification CDRL.

4.1.2 Production Request Editor

This application allows the user to submit production requests that describe the data products to be
produced. The application uses the PGE descriptions (profiles) entered during AI&T in order to
work out the tasks - Data Processing Requests - that in sum meet the request. The application
provides the capabilities to add, modify, and delete Production Requests, as well as review and
modify the resulting Data Processing Requests. The production request editor is identified as a
distinct application and separate from the workbench in anticipation that defining production
requests will be a discrete activity, unrelated to the “planning” of these events.

The Production request editor may also be used by authorized operations staff to schedule Data
Processing Requests derived from a production request directly to the Data Processing subsystem.

4.1.3 Production Planning Workbench

The application is used to prepare a schedule for the production at a site, and forecast the start and
completion times of the activities within the schedule. These functions provided by the workbench
include the following high-level activities:

• Candidate Plan Creation -- from the production requests prepared by the Production request
Editor;

• Plan Activation -- activating a candidate plan;

• Updating the Active Plan -- feedback from the processing into the active plan; and

• Canceling/Modifying the Active Plan.

As described previously, activating a plan entails rolling a portion of a selected plan into the
AutoSys COTS. This “schedule” is then managed within the Data Processing subsystem. The
forecast times generated within the planner are used to set up operator alerts that would make the
operator aware of gross departures from the predicted schedule. The production planning
workbench can periodically update it's predictions using feedback from the AutoSys.

4.1.4 Planning Subscription Editor

This application provides the capabilities required to submit subscriptions to the Data Servers
responsible for the storage of ingested data. Registration of a subscription at a Data Server is
required for the Planning CSCI to receive notification when data arrive within the ECS. At this

4-3 305-CD-010-001

Release, the submission of subscriptions will be managed as an operator initiated activity, although
this may be automated at a later date.

4.1.5 Subscription Manager

The Subscription Manager is used to manage the receipt of a subscription notification from the
Data Server. Subscription notification is used to notify Planning on the arrival of input data
required by a given PGE. The Subscription Notification contains Universal References (URs)
which are pointers to the data objects stored in the Data Server. The Subscription Manager updates
the PDPS database to indicate when data become available. When all input data for a Data
Processing Request is available, the job defined for that Data Processing Request is released within
the Data Processing subsystem.

4.2 CSCI Context
Figure 4.2-1 and Table 4.2-2 illustrate the CSCI interfaces within the PLANG CSCI.

Figure 4.2-1. CSCI Event Flow Context Diagram

PLANG

ADSRV

PRONG

SDSRV

CSS

DDSRVMSS

IoAdAdvertisingSrv_C, getServiceCollector,
IoAdServiceCollection_C, Search,

getFirstServiceAd, getNextServiceAd,
IoAdServiceAdvertisement_C

DpPrScheduler,
CreateGEvntJob, CancelGEvntJob,

CreateDprJob, ReleaseDprJob,
UpdateDprJob, GetDprJobStatus, CancelDprJob

DsClSubscription, Submit, Withdraw,
DsClESDTReferenceCollector, Search, DsQuery,

DsESDTReference, Inspect

EcMpMsgPsngCtrl, CreateReceiver,
EcMpQueueIn, GetMessageWait

DsCtClient, SubmitRequest,
DsCtCommand, DsCtRequest

MsManager, MsMgCallbacks,
NotifyCb, ResumeCb, SuspendCb, ShutdownCb,

MsEvent, LogEvent,
MsUsProfile, MsDAAC

PlPGEProfile, PlPGE,
PlResourceRequirement, PlUserParameters,

PlPerformance, PlDataType, PlDataGranule, PlDPR,
PlGroundEvent

4-4 305-CD-010-001

Table 4.2-2. CSCI Event Flow Summary (1 of 2)
Sender Receiver Event Name

PLANG PRONG CancelDprJob
PLANG PRONG CancelGEvntJob
PLANG PRONG CreateDprJob
PLANG PRONG CreateGEvntJob
PLANG CSS CreateReceiver
PLANG PRONG DpPrScheduler
PLANG SDSRV DsClESDTReferenceCollector
PLANG SDSRV DsClSubscription
PLANG DDSRV DsCtClient
PLANG DDSRV DsCtCommand
PLANG DDSRV DsCtRequest
PLANG SDSRV DsESDTReference
PLANG SDSRV DsQuery
PLANG CSS EcMpMsgPsngCtrl
PLANG CSS EcMpQueueIn
PLANG PRONG GetDprJobStatus
PLANG CSS GetMessageWait
PLANG SDSRV Inspect
PLANG ADSRV IoAdAdvertisingSrv_C
PLANG ADSRV IoAdServiceCollection_C
PLANG ADSRV IoAdServiceAdvertisement_C
PLANG MSS LogEvent
PLANG MSS MsDAAC
PLANG MSS MsEvent
PLANG MSS MsManager
PLANG MSS MsMgCallbacks
PLANG MSS MsUsProfile
PLANG MSS NotifyCb
PRONG PLANG PlDPR
PRONG PLANG PlDataGranule
PRONG PLANG PlDataType
PRONG PLANG PlGroundEvent
PRONG PLANG PlPGE
PRONG PLANG PlPGEProfile
PRONG PLANG PlPerformance
PRONG PLANG PlResourceRequirement
PRONG PLANG PlUserParameters
PLANG PRONG ReleaseDprJob
PLANG MSS ResumeCb
PLANG SDSRV Search
PLANG ADSRV Search

4-5 305-CD-010-001

4.3 CSCI Object Model
The CSCI object model is shown in a number of views; Figures 4.3-1 to 4.3-8. Each view aims to
capture a different aspect of the CSCI capabilities. Classes will appear in several views, only the
operations and attributes pertinent to the capability being illustrated are included in the figures in
order to reduce confusion. Complete class descriptions are provided in text in section 4.4.

4.3.1 PGE Profile View

The PGE profile view (Figure 4.3-1) describes the classes which are provided the Algorithm
Integration and Test Tools to allow the entry of information that describes a PGE to the Production
Planning CSCI.

The key classes introduced within this model are:

• PlPGEProfile: This class describes the collection of information that describes a PGE to the
Planning subsystem.

• PlPGE: This is the base class within a generalization hierarchy that describes PGEs. The
class defines abstract operations required for the planning subsystem to determine when a
PGE needs to be scheduled, as well as containing the key attributes defining the PGE.

• PlDataScheduled: This specialization of the PGE accounts for the classification of PGEs
whereby the PGE scheduling is determined directly from the period of some primary input
data type.

• PlTimeScheduled: This specialization of the PGE accounts for the classification of PGEs
whereby the PGE scheduling is determined from some regular time period, such as an hour,
a day, a week, a month etc.

• PlDataType: This class describes the data types used or output from PGEs. The PlDataType
class can be thought of as a proxy to the Earth Science Data Type of the Data Server. The
class contains the information required by the Planning subsystem to describe the inputs
and outputs of a PGE.

• PlDataTypeReq: This describes the correlation between a PGE and the input data type. This
class contains the data that allows a PGE to select the required granules of a given input
type to perform a production task.

PLANG MSS ShutdownCb
PLANG SDSRV Submit
PLANG DDSRV SubmitRequest
PLANG MSS SuspendCb
PLANG PRONG UpdateDprJob
PLANG SDSRV Withdraw
PLANG ADSRV getFirstServiceAd
PLANG ADSRV getNextServiceAd
PLANG ADSRV getServiceCollector

Table 4.2-2. CSCI Event Flow Summary (2 of 2)
Sender Receiver Event Name

4-6 305-CD-010-001

• PlOutputYield: Specifies the recipe to describe the output data granules for a PGE.

• PlUserParameters: Describes any user defined parameters that have to be associated to a
PGE.

• PlResourceRequirements: This class contains a description of the resource requirements of
a PGE, which may be matched against the resource configuration known to the Planning
subsystem.

• PlPerformance: This class describes the performance statistics of a PGE. These
performance statistics are established at AI&T. The class also contains attributes to
describe the statistics updated from the Data Processing subsystem.

The interactions of these classes are described within the following scenarios:

• 4.5.1 PGE Profile

4.3.2 Production Request View

This view (Figure 4.3-2) describes the classes used during the entry of a production request and the
subsequent process by which the Production Request is translated into Data Processing Requests.

The following key classes are introduced:

• PlProductionRequest: A production request describes an order for data sets. A production
request typically specifies a request for a Data Set to be produced for an extended period of
time (e.g a month’s worth of some product).

• PlDPR: The DPR describes a single run of a PGE and has associations to the data items
required for that Data Processing Request.

• PlDataGranule: This class describes a data item to the planning subsystem. This object is
in effect a proxy to the real data items within the ECS, the class describes the information
that is needed in the Planning subsystem to allow selection of that granule by a PGE for a
Data Processing Request. The PlDataGranule describes either data that is actually in the
system or a prediction of data that will come into the system.

• PlDataSource: This class is the base class that provides the methods for predicting when
external data will arrive within the ECS, for example, from SDPF or National Oceanic and
Atmospheric Administration (NOAA). The Data Sources are specialized to describe the
different ways that predictions are obtained.

• PlRoutineArrival: This class is a specialization of the PlDataSource class and describes the
most frequent method for predicting data arrivals within the ECS (at least for the TRMM
data sets). This class contains the attributes and operations required to describe routine
ingest of external data.

• DsClQuery: This class is used to construct a query to the Data Server for information on
data that already exists in the system and is required for reprocessing.

• DsClESDTReferenceCollector: When applied to the data server a query returns a list of
ESDTs that fulfill the criteria of the query.

• DsClESDTReference: This class is used to extract the metadata for a particular granule
returned from the Query.

4-7
305-C

D
-010-001

PlPGEProfile

PlDataType

PlResourceRequirement

PlUserParameters

PlPGE

PlDataScheduled PlTimeScheduled PlOtherTypes

PlPerformance

myAcquisitionProcessingBoundary

myAcquisitionProcessingPeriod

myTimeUnits

myNoOfTimeUnitsPerPgeRun

GenerateDPRs(PlProductionRequest)

myPrimaryDataSource

myInputDataId

myNoOfInstancesPerPgeRun

GenerateDPRs(PlProductionRequest)

myDescription

myName

myLogicalID

myDefaultValue

PlUserParameters()

~PlUserParameters()

Create()

Delete()

Modify(DefValue:String)

myString

myComputer

myOperatingSystem

myNCPUs

myDiskSpace

PlResourceRequirement()

~PlResourceRequirement()

myInstrument

myPlatform

myPGEName

myInputDataTypeList

myOutputDataTypeList

myTestOperational

myPGEVersion

PlPGE()

PlPGE(int PGEid)

~PlPGE()

Delete()

FindDataAvailability(Interval)

GenerateDPRs(PlProductionRequest)

UpdateVersion()

Modify(TestOrOper:enum)

myCommandString

myYield

myLogicalID

myLogicalID

myCommandString

myQAThreshold

myDataTypeReq

myPGECPUTime

myElapsedTime

mySharedMemoryUse

myMaxMemoryUse

myNoOfPageFaults

myNoOfSwaps

myNoOfBlockInOper

myNoOfBlockOutOper

myRunPGUCPUTime

myRunElapsedTime

myRunSharedMemoryUse

myRunMaxMemoryUse

myRunNoOfPageFaults

myRunNoOfSwaps

myRunNoOfBlockInOper

myRunNoOfBlockOutOper

UpdateRunTimePerfPar(ParId:int, ParValue:String)

myDescription

myName

myLogicalID

myESDTParmList

mySubscriptionFile

mySubscriptionQueue

myDServURString

myCatalogueCatagory

myInstrumentName

mySatelliteName

myNominalSize

myQASubscription

myDynamicFlag

FindDataAvailability(Interval)

MatchDataArrival()

InspectDataArrival()

RegisterDataArrival()

SetSubscriptionQueue(String:QueueName)

InstallReceiver()

$PlPGEProfile(...)

~PlPGEProfile(...)

ModifyPGEProfile(PGEProfId:int, ModType:enum, ModField:String, ModValue:String)

DeletePGEProfile(PGEProfID:int)

RetrievePGEProfile(PlPGEProfID)

PlDataTypeReq

PlOutputYield

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS] P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

 _ : Time

 _ : Time

 _ : enum

 _ : float

 + : void

 _ : String

 _ : int

 _ : int

 + : void

 _ : String

 _ : String

 _ : int

 _ : String

 + : PlUserParameters

 + : void

 + : void

 + : void

 + : void

 _ : String

 _ : String

 _ : String

 _ : int

 _ : int

 + : PlResourceRequirement

 + : void

 _ : String

 _ : String

 _ : String

 _ : List

 _ : List

 _ : enum

 _ : float

 + : PlPGE

 + : PlPGE

 + : void

 + : void

 + : void

 + : void {abstract}

 + : void

 + : void

 _ : String

 _ : float

 _ : int

 _ : int

 _ : String

 _ : String

 _ : String

 _ : Time

 _ : Time

 _ : float

 _ : float

 _ : int

 _ : int

 _ : int

 _ : int

 _ : Time

 _ : Time

 _ : float

 _ : float

 _ : int

 _ : int

 _ : int

 _ : int

 +

 _ : String

 _ : String

 _ : int

 _ : GlParameterList

 _ : File

 _ : String

 _ : String

 _ : String

 _ : String

 _ : String

 _ : float

 _ : Boolean

 _ : Boolean

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

output

input

Figure 4.3-1. PGE Profile Object Model

4-8 305-CD-010-001

The interactions of these classes are described within the following scenarios:

• 4.5.2 Production Request

• 4.5.3 Data Availability

4.3.3 Subscription Submission View

This view (Figure 4.3-3) describes the classes used during the generation, submission and with-
drawal of Subscriptions for the notification of data arrival. The diagram essentially describes the
key components of the subscription submission application.

The classes that are introduced in this model are:

• PlSubscriptionSubmitIF: This class is an abstraction for the user interface to the
subscription submission application. The interface will be developed with a suitable GUI
builder tool. See section 4.6.3 for a fuller description of this user interface.

• IoAdAdvertisingSrv_C: The advertising service provides access to the advertisement
collections.

• IoAdServiceCollection_C: The advertising collection provides access to the ECS
advertisements, which describe the services available for the ECS data. The advertisements
of interest to the Planning subsystem are those that permit subscribing to insert events
within the Science Data Server.

• IoAdServiceAdvertisement_C: The advertisement is used in order to build the Data Server
Subscription

• DsClSubscription: This class is used to register and withdraw subscription in the Data
Server. The constructor for this class is overloaded to permit the specification of the
callback queue on which the generator of the subscription is notified of events which fulfill
the subscription.

• MsUsProfile: The user profile describes the originator of the subscription to the Data
Server.

• PlDataType: The status of the subscription is recorded within the planning Data Type
abstraction through modification of the subscription queue attribute.

The interactions of these classes are described within the following scenarios:

• 4.5.4 Submitting a subscription

• 4.5.5 Withdrawing a subscription

4.3.4 Production Planning View

This view (Figure 4.3-4) describes the classes used in the creation and management of plans. The
design presented here for a number of key classes is at a high level of abstraction. This level of
abstraction is offered to explain the design without going into detail about the planning framework
(Delphi) which supports the plan generation. The planning framework within the Production
Planning CSCI is documented in detail within the Planning Object Library CSC, section 4.6.5.
That section contains object models, class descriptions and scenarios for the framework and maps
the objects used in framework to the abstractions presented here.

4-9
305-C

D
-010-001

PlDataType

PlPGE

PlProductionRequest

PlDataTypeCatalogue

PlProductionRequestUI

PlDataGranule

PlDPR

PlDataSource

PlRoutineArrival

PlFOSPrecictedArrival

PlScheduledArrival

DsClESDTReferenceCollector

DsClESDTReference

DsClQuery

PlApplication PlUser

CatalogueRequest()

RetrieveDefPGE(ProductType:String)

myPriority

myPGEIdentifier

myOutputDataType

myDataCollectionStopTime

myDataCollectionStartTime

PlProductionRequest(Product:String, PGE:String, Start:Time, Stop:Time,

Prior:int)

Modify(ModField:String, ModVal:String)

DefinePGERuns()

RetrieveAllProdReq()

AddProductionRequest()

ModifyProductionRequest()

DelProductionRequest()

myUserName

myProdReqPriv

myRescManPriv

myProdSchPriv

Authenticate()

myName

myMajorVersionId

myMinorVersionId

GetName(String *name)

GetVersion(int *maj, int *min)

myPredictedMethod

mySupplierName

PredictArrivals(Start:Time, Stop:Time)

PredictArrivals(Start:Time, Stop:Time)

PredictArrivals(Start:Time, Stop:Time)

myDataBoundary

myDataPeriod

myDelay

PredictArrivals(Start:Time, Stop:Time)

myDescription

myName

myLogicalID

myESDTParmList

mySubscriptionFile

mySubscriptionQueue

myDServURString

myCatalogueCatagory

myInstrumentName

mySatelliteName

myNominalSize

myQASubscription

myDynamicFlag

FindDataAvailability(Interval)

MatchDataArrival()

InspectDataArrival()

RegisterDataArrival()

SetSubscriptionQueue(String:QueueName)

InstallReceiver()

myStopTime

myStartTime

myESDTParmVals

myUR

myAvailability

myActualAvailability

myPredictedAvailability

PlDataGranule()

~PlDataGranule()

Create(Time:start, Time:stop)

RegisterAvailability(GlUR:instUR, GlParameterList: instESDTParmVals)

FindAssociatedDPRs()

GetAvailability()

myCommandString

myYield

myLogicalID

myLogicalID

myCommandString

myQAThreshold

myDataTypeReq

myInputDataInstanceList

myOutputDataInstanceList

myPGEJobID

myPriority

myPredictedStart

myActualStart

myCompletionState

PlDPR()

PlDPR(int DPRid)

~PlDPR()

GetInputDataList()

GetOutputDataList()

GetNextInputData()

GetNextOutputData()

GetCommandString(String:DataType)

GetLogicalId(String:DataType)

Schedule()

Status()

Modify()

Release()

Cancel()

CheckAvailability()

myInstrument

myPlatform

myPGEName

myInputDataTypeList

myOutputDataTypeList

myTestOperational

myPGEVersion

PlPGE()

PlPGE(int PGEid)

~PlPGE()

Delete()

FindDataAvailability(Interval)

GenerateDPRs(PlProductionRequest)

UpdateVersion()

Modify(TestOrOper:enum)

DsQuery

~DsQuery

Inspect

Search

PlDataTypeReq

PlOutputYield

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS] P[PERSISTENT CLASS]

 + : catalogue:char*

 + : DefPGEName:String

 _ : int

 _ : String

 _ : String

 _ : Time

 _ : Time

 +

 +

 +

 + : ProductionRequest *

 + : void

 + : void

 + : void

 _ : String

 _ : Boolean

 _ : Boolean

 _ : Boolean

 + : Boolean

 _ : String

 _ : int

 _ : int

 + : void

 + : void

 _ : enum

 _ : String

 + : void {abstract}

 + : void

 + : void

 _

 _ : Time

 _ : Time

 + : void

 _ : String

 _ : String

 _ : int

 _ : GlParameterList

 _ : File

 _ : String

 _ : String

 _ : String

 _ : String

 _ : String

 _ : float

 _ : Boolean

 _ : Boolean

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 _ : Time

 _ : Time

 _ : GlParameterList

 _ : GlUR

 _ : Boolean

 _ : Time

 _ : Time

 + : PlDataGranule

 + : void

 + : void

 + : void

 + : PlDPRs

 + : Boolean

 _ : String

 _ : float

 _ : int

 _ : int

 _ : String

 _ : String

 _ : String

 _ : List

 _ : List

 _ : int

 _ : int

 _ : Time

 _ : Time

 _ : String

 + : PlDPR

 + : PlDPR

 + : void

 + : List

 + : List

 + : PlDataGranule

 + : PlDataGranule

 + : String

 + : int

 + : void

 + : void

 + : void

 + : void

 + : void

 + : Boolean

 _ : String

 _ : String

 _ : String

 _ : List

 _ : List

 _ : enum

 _ : float

 + : PlPGE

 + : PlPGE

 + : void

 + : void

 + : void

 + : void {abstract}

 + : void

 + : void

populates

output

input

Figure 4.3-2. Production Request Object Model

4-10
305-C

D
-010-001

PlDataType

DsClSubscription

DsClSubscription(Advertisement&, userinfo, DsClSubsriptionCollector&, CallbackQ)

Submit

Withdraw

IoAdServiceCollection_C

IoAdServiceCollection_C

~IoAdServiceCollection_C

PlSubscriptionSubmitIF

IoAdServiceAdvertisement

PlApplication

MsUsProfile
myName

myMajorVersionId

myMinorVersionId

GetName(String *name)

GetVersion(int *maj, int *min)

myDescription

myName

myLogicalID

myESDTParmList

mySubscriptionFile

mySubscriptionQueue

myDServURString

myCatalogueCatagory

myInstrumentName

mySatelliteName

myNominalSize

myQASubscription

myDynamicFlag

FindDataAvailability(Interval)

MatchDataArrival()

InspectDataArrival()

RegisterDataArrival()

SetSubscriptionQueue(String:QueueName)

InstallReceiver()

DataTypeSelectionWindow

SubscriptionSubmissionControl

DisplayDataTypes()

SelectDataType()

WithdrawSubscription()

SubmitSubscription()

Initialize()

IoAdAdvertisingSrv_C

IoAdAdvertisingSrv_C

~IoAdAdvertisingSrv_C

getServiceCollector

Search

getFirstServiceAd

getNextServiceAd

MsUsProfile

~MsUsProfile

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

 _ : String

 _ : int

 _ : int

 + : void

 + : void

 _ : String

 _ : String

 _ : int

 _ : GlParameterList

 _ : File

 _ : String

 _ : String

 _ : String

 _ : String

 _ : String

 _ : float

 _ : Boolean

 _ : Boolean

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 _

 _

 +

 +

 +

 +

 +

searches

updates

creates

selects

Figure 4.3-3. Subscription Submission Object Model

4-11 305-CD-010-001

The diagram introduces the following key classes:

• PlPlanningWorkbenchUI: This class is an abstraction for the user interface to the planning
workbench application. The interface will be developed with a suitable GUI builder tool.

• PlPlan: This class represents an abstraction for a production plan. The class describes the
metadata that will be stored for a plan within the PDPS database. The operations shown are
an abstraction for those used within the planning framework.

• PlResourceManager: This class represents an abstraction for the resource management
capabilities used when generating a plan, describing the operations required to match
resource requirements of an activity to the available resources, and to allocate the resource
for the activity.

• PlResourceRequiremet: This class describes the resource requirements for a task. These
requirements may then be matched against the actual resources available.

• PlActivity: This class describes an item within a plan. The activity class is a base class
within a specialization hierarchy describing the different activities which occur in the
production plan.

• PlPGEActivity: This class is a specialization of the PlActivity class. The class describes a
Data Processing Request - a run of a PGE - within the plan.

• PlGroundActivity: This class is a generalization of the PlActivity class. The class describes
a Ground Event within the plan.

• PlGroundEvent: This class describes a Ground Event which is recorded in the PDPS
database. A Ground Event marks the allocation of resources to some non-production task
such as maintenance.

• PlPublishedPlan: This object encapsulates the methods required to insert externalized
formats of the plan into the document data server.

The interactions of these classes are described within the following scenarios:

• 4.5.6 Adding/Modify/Deleting a Ground Event

• 4.5.7 Creating a Plan

• 4.5.8 Deleting a Plan

• 4.5.9 Publishing a Plan

4.3.5 Resource Management View

This view (Figure 4.3-5) describes the classes used in the description of the production resource
configuration. The MSS provides the planning subsystem (and all subsystems) with resource
configuration information. The view is a continuation from the Production Planning Workbench
view, presented separately to reduce the complexity of the Workbench diagram. The details for
how the resource configuration is integrated into the framework for the production planning
workbench are presented in section 4.6.5.

4-12
305-C

D
-010-001

PlDPR

PlActivity

PlPGEActivityPlGroundActivity

PlGroundEvent

PlPlanPlPlanningWorkbenchUI

PlProductionRequest

PlGroundEvents

PlDPRs

PlResourceRequirement

PlPlanGenerationUI

PlTimeLineDisplay

PlResourceManagersUI

PlResourceManager

PlPublishScript PlAddressFile

PlApplication

PlPublishedPlan

PlPlanMetadataFile PlPlanASCIIReportFilePlPlanBinaryReportFile

Write()Write()

myDataSets

myDescription

myForecast

myEndDay

myStartTime

myDAAC

InsertInDDS()

Execute()

myEmailAddress

myEndTime

myStartTime

myDescription

myPlanName

myActiveStatus

DeletePlan()

UnplanProductionRequest(PlProductionRequest: PR)

PlanProductionRequest(PlProductionRequest: PR)

CreatePlan()

PlanSchedule()

UpdatePlan()

Publish()

ResourceManagerCommands()

ProductionSchedulerCommands()

myName

myMajorVersionId

myMinorVersionId

GetName(String *name)

GetVersion(int *maj, int *min)

EventDescriptionWindow

EventSelectionWindow

DeleteGroundEvent()

CreateGroundEvent()

SelectGroundEvent()

ModifyGroundEvent()

ConfirmCreate()

ConfirmModify()

ConfirmDelete()

myString

myComputer

myOperatingSystem

myNCPUs

myDiskSpace

PlResourceRequirement()

~PlResourceRequirement()

myInputDataInstanceList

myOutputDataInstanceList

myPGEJobID

myPriority

myPredictedStart

myActualStart

myCompletionState

PlDPR()

PlDPR(int DPRid)

~PlDPR()

GetInputDataList()

GetOutputDataList()

GetNextInputData()

GetNextOutputData()

GetCommandString(String:DataType)

GetLogicalId(String:DataType)

Schedule()

Status()

Modify()

Release()

Cancel()

CheckAvailability()

myName

myDescription

myPriority

myDuration

myWinEndTime

myWinStartTime

myTemplateFlag

PlGroundEvent()

~PlGroundEvent()

Create()

Delete()

Cancel()

Modify()

Status()

Schedule()

Delete(PlGroundEvent: event)

Add(PlGroundEvent: event)

Next()

First()

SelectEvents(Interval)

PlDPRs()

~PlDPRs()

Delete(PlDPR: dpr)

Add(PlDPR: dpr)

Next()

First()

SelectDPRs(Interval)

myPriority

myPredictedStop

myPredictedStart

Schedule()

Cancel()

Status()

Modify()

MatchResourceRequirement(PlResourceRequirements)

AllocateResources(PlResource: Resource, PlActivity: Activity)

DeallocateResources(PlResource: Resource, PlActivity: Activity)

DelPRfromPlan(PlProductionRequest: PR)

AddPRtoPlan(PlProductionRequest: PR)

NewPlan()

SelectPlan()

DisplayPlan()

DsCtClient

DsCtCommand

DsCtRequest

SubmitRequest DsCtRequest

SetCatagory

SetServiceName

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

 _ : String

 _ : String

 _ : int

 _ : Time

 _ : Time

 _ : String

 + : void

 + : void

 _ : String

 _ : Time

 _ : Time

 _ : String

 _ : String

 _ : Boolean = False

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 +

 +

 _ : String

 _ : int

 _ : int

 + : void

 + : void

 _

 _

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 _ : String

 _ : String

 _ : String

 _ : int

 _ : int

 + : PlResourceRequirement

 + : void

 _ : List

 _ : List

 _ : int

 _ : int

 _ : Time

 _ : Time

 _ : String

 + : PlDPR

 + : PlDPR

 + : void

 + : List

 + : List

 + : PlDataGranule

 + : PlDataGranule

 + : String

 + : int

 + : void

 + : void

 + : void

 + : void

 + : void

 + : Boolean

 _ : String

 _ : String

 _ : int

 _ : Time

 _ : Time

 _ : Time

 _ : Boolean = False

 + : PlGroundEvent

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : PlGroundEvent

 + : PlGroundEvent

 + : void

 + : PlDPRs

 + : void

 + : void

 + : void

 + : PlDPR

 + : PlDPR

 + : void

 _ : int

 _ : Time

 _ : Time

 + : void {abstract}

 + : void {abstract}

 + : void {abstract}

 + : void {abstract}

 + : PlResource

 +

 +

 + : void

 + : void

 + : void

 + : void

 + : void

Figure 4.3-4. Production Planning Object Model

4-13
305-C

D
-010-001

PlComputerPlString

PlDiskPartition

PlResource

PlResourceConfigeration
PlResourceManager

MsDAAC

NextResource

FirstResource

ApplyFilter

myDeviceID

myPartitionSize

myBlockSize

mySysAlloction

myUserAllocation

myDiskList

myCPUs

myPerProcessRam

myTotalRam

myOperatingSystem

/ myMaxDiskSpace

PlComputer()

~PlComputer()

AddDisk(PlDisk)

RemoveDisk(PlDisk)

myComputerList

RemoveComputer(PlComputer: Comp)

AddComputer(PlComputer: Comp)

myID

myName

BuildConfiguration()
MatchResourceRequirement(PlResourceRequirements)

AllocateResources(PlResource: Resource, PlActivity: Activity)

DeallocateResources(PlResource: Resource, PlActivity: Activity)

P[PERSISTENT CLASS]P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

 _ : String

 _ : int

 _ : int

 _ : int

 _ : int

 _ : List

 _ : int

 _ : int

 _ : int

 _ : String

/_ : int

 + : void

 + : void

 + : void

 + : void

 _ : List

 + : void

 + : void

 _ : int

 _ : String

 + : void
 + : PlResource

 +

 +

Figure 4.3-5. Resource Management Object Model

4-14 305-CD-010-001

The diagram introduces the following key classes:

• PlResource: This class is the base class in a generalization heirachy describing the
production resources.

• PlString: A string describes the logical collection of a number of resources allocated for an
instruments processing needs.

• PlComputer: This class describes the production computers

• PlDiskPartition: This class describes the disk resources for data production.

• MsDAAC: This class provides MSS configuration information to the planning subsystem.

The interactions of these classes are described in the following scenario

• 4.5.10 Building the Resource Configuration

4.3.6 Plan Activation View

This view (4.3-6) again shows more detail for the Planning Workbench. It explicitly shows the
Data Processing subsystem interface.

The diagram introduces the following key classes:

• PlProductionPlannersUI: This class is an abstraction for the user interface to the planning
workbench application. The interface will be developed with a suitable GUI builder tool.
The class does describe the basic operations that are provided from the interface.

• PlActivePlan: This class is the specialization of the PlPlan class and contains the methods
to manage the activation, cancelling, and statesman of a plan.

• DpPrScheduler: This class is the interface to the Data Processing subsystem for entering
jobs into the job scheduler.

 The interactions of these classes are described in the following scenario:

• 4.5.11 Activating a Plan,

• 4.5.12 Cancelling a Plan, and

• 4.5.13 Statusing/Updating a Plan.

4.3.7 Subscription Manager View

This view (4.3-7) describes the classes used in the management of notification that a subscription
has been fulfilled.

This view introduces the following key classes:

• PlSubscriptionManager: This class contains the main application methods associated with
the subscription manager application

• PlSubscriptionManagerCallbacks: Specialization class to provide the subscription manager
callbacks to the MsManager in order to be activated for the appropriate lifecycle services
(shutdown, resume, suspend notify).

• MsManager: This class contains the external interfaces required by the MSS agents in order
to activate the appropriate lifecycle services.

4-15 305-CD-010-001

Figure 4.3-6. Plan Activation Object Model

PlDPR

PlActivity

PlActivePlan

PlPGEActivity

PlGroundActivity

PlGroundEvent

PlPlan

PlActivities

PlProductionPlannersUI

DpPrScheduler

CreateDprJob

GetDprJobStatus

ReleaseDprJob

UpdateDprJob

CancelDprJob

CreateGEvntJob

CancelGEvntJob

PlanSelectionWindow
SchedulingPeriod

NewPlan()

SelectPlan()

DelPRfromPlan()

AddPRtoPlan()

ActivateSchedule()

CancelSchedule()

StatusSchedule()

DeletePlan()

ModifySchedule()

myEndTime

myStartTime

myDescription

myPlanName

myActiveStatus

DeletePlan()

UnplanProductionRequest(PlProductionRequest: PR)

PlanProductionRequest(PlProductionRequest: PR)

CreatePlan()

PlanSchedule()

UpdatePlan()

Publish()

ScheduledEndTime

ScheduledStartTime

PlActivePlan()

PlActivePlan(int: PlanID)

~PlActivePlan()

StatusSchedule()

CancelSchedule()

ActivateSchedule(Interval)

ModifySchedule()

PlActivities()

~PlActivities()

SelectActivatedActivities()

Delete(PlActivity: activity)

Add(PlActivity: activity)

Next()

First()

SelectActivities(Interval: interv)

myPriority

myPredictedStop

myPredictedStart

Schedule()

Cancel()

Status()

Modify()

PlGroundActivity()

PlGroundActivity(PlGroundEvent)

~PlGroundActivity()

Schedule()

Cancel()

Status()

Modify()

PlPGEActivity()

PlPGEActivity(PlDPR)

~PlPGEActivity()

Schedule()

Cancel()

Status()

Modify()

myName

myDescription

myPriority

myDuration

myWinEndTime

myWinStartTime

myTemplateFlag

PlGroundEvent()

~PlGroundEvent()

Create()

Delete()

Cancel()

Modify()

Status()

Schedule()

myInputDataInstanceList

myOutputDataInstanceList

myPGEJobID

myPriority

myPredictedStart

myActualStart

myCompletionState

PlDPR()

PlDPR(int DPRid)

~PlDPR()

GetInputDataList()

GetOutputDataList()

GetNextInputData()

GetNextOutputData()

GetCommandString(String:DataType)

GetLogicalId(String:DataType)

Schedule()

Status()

Modify()

Release()

Cancel()

CheckAvailability()

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

 _
 _

 +

 +

 +

 +

 +

 +

 +

 +

 +

 _ : Time

 _ : Time

 _ : String

 _ : String

 _ : Boolean = False

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 _ : Time

 _ : Time

 + : PlActivePlan

 + : PlActivePlan

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : PlActivity

 + : PlActivity

 + : void

 _ : int

 _ : Time

 _ : Time

 + : void {abstract}

 + : void {abstract}

 + : void {abstract}

 + : void {abstract}

 + : PlGroundActivity

 + : PlGroundActivity

 + : void

 + : void

 + : void

 + : void

 + : void

 + : PlPGEActivity

 + : PlPGEActivity

 + : void

 + : void

 + : void

 + : void

 + : void

 _ : String

 _ : String

 _ : int

 _ : Time

 _ : Time

 _ : Time

 _ : Boolean = False

 + : PlGroundEvent

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 _ : List

 _ : List

 _ : int

 _ : int

 _ : Time

 _ : Time

 _ : String

 + : PlDPR

 + : PlDPR

 + : void

 + : List

 + : List

 + : PlDataGranule

 + : PlDataGranule

 + : String

 + : int

 + : void

 + : void

 + : void

 + : void

 + : void

 + : Boolean

4-16 305-CD-010-001

• EcMpMsgPsngCtrl: This class contains the communications services for guaranteed
asynchronous notification used for subscription notification

• GlUR: This class is used to create a Universal Reference (UR) from the Data Server
subscription notification

• DsClESDTReference: This class provides the subscription manager with services by which
to access the metadata associated to a Universal Reference.

The interactions of these classes are described within the following scenarios:

• 4.5.14 Subscription Manager Startup

• 4.5.15 Subscription Notification

• 4.5.16 Subscription Manager Shutdown

4.3.8 DBMS Proxy Agent View

This view (Figure 4.3-8) describes the classes used in the management of the lifecycle services for
the PDPS DBMS. This application is almost a template reuse of the MSS services for Proxy
Agents. For further details of the MSS agents and proxy agents refer to Release A CSMS
Management Subsystem Design Specification for the ECS Project.

4.4 Class Descriptions

4.4.1 DpPrScheduler Class

DpPrScheduler: This class is the interface to the Data Processing subsystem for entering
jobs into the job scheduler.

The full description for this class is provided in the Data Processing Design Specification.

4.4.2 DsClESDTReference Class

DsClESDTReference: This class provides the subscription manager with services by which
to access the metadata associated to a Universal Reference.

The full description for this class is provided in the Data Server Design Specification.

4.4.3 DsClESDTReferenceCollector Class

DsClESDTReferenceCollector: When applied to the data server a query returns a list of
ESDTs that fulfill the criteria of the query.

The full description for this class is provided in the Data Server Design Specification.

4-17 305-CD-010-001

Figure 4.3-7. Subscription Manager Object Model

PlDataType

PlDataGranule

PlDPR

PlSubscriptionManager

DsClESDTReference

Inspect

MsManager

PlSubscriptionManagerCallbacks

MsMgCallbacks

PlDataTypes

GlUR

EcMpMsgPsngCtrl

EcMpMsgQueueIn

PlApplication

GlUR

~GlUR

DpPrScheduler

CreateDprJob()

GetDprJobStatus()

ReleaseDprJob()

UpdateDprJob()

CancelDprJob()

CreateGEvntJob()

CancelGEvntJob()

MsEvent

myName

myMajorVersionId

myMinorVersionId

GetName(String *name)

GetVersion(int *maj, int *min)

myInputDataInstanceList

myOutputDataInstanceList

myPGEJobID

myPriority

myPredictedStart

myActualStart

myCompletionState

PlDPR()

PlDPR(int DPRid)

~PlDPR()

GetInputDataList()

GetOutputDataList()

GetNextInputData()

GetNextOutputData()

GetCommandString(String:DataType)

GetLogicalId(String:DataType)

Schedule()

Status()

Modify()

Release()

Cancel()

CheckAvailability()

NotifyCb()

ResumeCb()

SuspendCb()

ShutdownCb()

Init()

InstallReceivers()

DeinstallReceivers()

Shutdown()

SelectSubscribedTypes()

Next()

First()

myDescription

myName

myLogicalID

myESDTParmList

mySubscriptionFile

mySubscriptionQueue

myDServURString

myCatalogueCatagory

myInstrumentName

mySatelliteName

myNominalSize

myQASubscription

myDynamicFlag

FindDataAvailability(Interval)

MatchDataArrival()

InspectDataArrival()

RegisterDataArrival()

SetSubscriptionQueue(String:QueueName)

InstallReceiver()

myStopTime

myStartTime

myESDTParmVals

myUR

myAvailability

myActualAvailability

myPredictedAvailability

PlDataGranule()

~PlDataGranule()

Create(Time:start, Time:stop)

RegisterAvailability(GlUR:instUR, GlParameterList: instESDTParmVals)

FindAssociatedDPRs()

GetAvailability()

CreateReceiver

GetMessageWait

NotifyCb()

ResumeCb()

SuspendCb()

ShutdownCb()

MsManager

~MsManager

LogEvent

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

P[PERSISTENT CLASS]

 _ : String

 _ : int

 _ : int

 + : void

 + : void

 _ : List

 _ : List

 _ : int

 _ : int

 _ : Time

 _ : Time

 _ : String

 + : PlDPR

 + : PlDPR

 + : void

 + : List

 + : List

 + : PlDataGranule

 + : PlDataGranule

 + : String

 + : int

 + : void

 + : void

 + : void

 + : void

 + : void

 + : Boolean

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 + : PlDataType

 + : PlDataType

 _ : String

 _ : String

 _ : int

 _ : GlParameterList

 _ : File

 _ : String

 _ : String

 _ : String

 _ : String

 _ : String

 _ : float

 _ : Boolean

 _ : Boolean

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 _ : Time

 _ : Time

 _ : GlParameterList

 _ : GlUR

 _ : Boolean

 _ : Time

 _ : Time

 + : PlDataGranule

 + : void

 + : void

 + : void

 + : PlDPRs

 + : Boolean

uses

registers notification of

notification rcvd via

is a server

logs

4-18 305-CD-010-001

Figure 4.3-8. DBMS Proxy Agent Object Model

PlDBMSProxyAgent
MsManager

PlDBMSProxyAgentCallbacks

MsMgCallbacks

PlApplication

Shutdown()

Init()

ShutdownCb()

SuspendCb()

ResumeCb()

NotifyCb()

myName

myMajorVersionId

myMinorVersionId

GetName(String *name)

GetVersion(int *maj, int *min)

MsManager

~MsManager

NotifyCb

ResumeCb

SuspendCb

ShutdownCb

P[PERSISTENT CLASS]

 + : void

 + : void

 + : void

 + : void

 + : void

 + : void

 _ : String

 _ : int

 _ : int

 + : void

 + : void

is a server

uses

4-19 305-CD-010-001

4.4.4 DsClQuery Class

DsClQuery: This class is used to construct a query to the Data Server for information on
data that already exists in the system and is required for reprocessing.

The full description for this class is provided in the Data Server Design Specification.

4.4.5 DsClSubscription Class

DsClSubscription: This class is used to register and withdraw subscription in the Data
Server. The constructor for this class is overloaded to permit the specification of the
callback queue on which the generator of the subscription is notified of events which fulfill
the subscription.

The full description for this class is provided in the Data Server Design Specification.

4.4.6 DsCtClient Class

DsCtClient: This class is provided by the Document Data Server, and allows the Planning
Subsystem to submit a request for the insert of a Plan.

The full description for this class is provided in the Data Server Design Specification.

4.4.7 DsCtCommand Class

DsCtCommand: A command is used within a request to the Document Data Server, this
command is built with a parameter list syntax to specify the command.

The full description for this class is provided in the Data Server Design Specification.

4.4.8 DsCtRequest Class

DsCtRequest: A DsCtCommand command is built into a request to the Document Data
Server.

The full description for this class is provided in the Data Server Design Specification.

4-20 305-CD-010-001

4.4.9 EcMpMsgPsngCtrl Class

EcMpMsgPsngCtrl: This class contains the communications services for guaranteed
asynchronous notification used for subscription notification.

The full description for this class is provided in the Communications Subsystem Design
Specification.

4.4.10 EcMpMsgQueueIn Class

EcMpMsgQueueIn: This class contains the communications services for guaranteed
asynchronous notification used for subscription notification

The full description for this class is provided in the Communications Subsystem Design
Specification.

4.4.11 GlUR Class

GlUR: This class is used to create a Universal Reference (UR) from the Data Server
subscription notification

The full description for this class is provided in the internal interfaces document.

4.4.12 IoAdAdvertisingSrv_C Class

IoAdAdvertisingSrv_C: This class is used to obtain the Advertising Collection from the
Advertising Server.

The full description for this class is provided in the Interoperability Subsystem Design
Specification.

4.4.13 IoAdServiceAdvertisement Class

IoAdServiceAdvertisement_C: The advertisement is used in order to build the Data Server
Subscription.

The full description for this class is provided in the Interoperability Subsystem Design
Specification.

4-21 305-CD-010-001

4.4.14 IoAdServiceCollection_C Class

IoAdServiceCollection_C: The advertising collection provides access to the ECS
advertisements, which describe the services available for the ECS data. The advertisements
of interest to the Planning subsystem are those that permit subscribing to insert events
within the Science Data Server.

The full description for this class is provided in the Interoperability Subsystem Design
Specification.

4.4.15 MsDAAC Class

MsDAAC: This class provides MSS configuration information to the planning subsystem.

The full description for this class is provided in the Management Subsystem Design
Specification.

4.4.16 MsEvent Class

MsEvent: This class is used to log management information to the MSS.

The full description for this class is provided in the Management Subsystem Design
Specification.

4.4.17 MsManager Class

MsManager: This class contains the external interfaces required by the MSS agents in order
to activate the appropriate lifecycle services.

The full description for this class is provided in the Management Subsystem Design
Specification.

4.4.18 MsMgCallbacks Class

MsMgCallbacks: This is a base class for specialization of callbacks required to interface to
the MSS lifecycle services.

The full description for this class is provided in the Management Subsystem Design
Specification.

4-22 305-CD-010-001

4.4.19 MsUsProfile Class

MsUsProfile: The user profile describes the originator of the subscription to the Data
Server.

The full description for this class is provided in the Management Subsystem Design
Specification.

4.4.20 PlActivePlan Class

Parent Class: PlPlan
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
This class is the specialization of the PlPlan class and contains the methods to manage the
activation, cancelling, and statusing of a plan

Attributes:

ScheduledEndTime - The end date and time for the portion of the plan entered into the data
processing subsystem scheduler.
Data Type: Time
Privilege: Private
Default Value:

ScheduledStartTime - The start date and time for the portion of the plan entered into the
data processing subsystem scheduler.
Data Type: Time
Privilege: Private
Default Value:

Operations:

ActivateSchedule - Schedule the activities within the specified interval in the plan with the
data processing scheduler.
Arguments: Interval
Return Type: void
Privilege: Public
PDL:{
// Create an ordered list of activities which are within the plan
// and lie within the interval specified

4-23 305-CD-010-001

// Iterate through the list, and invoke the schedule method for
// each activity
}

CancelSchedule - Cancel the activities that have been scheduled from the plan within the
data processing scheduler
Arguments:
Return Type: void
Privilege: Public
PDL:{
// Create an ordered list of activities which are within the plan
// and have been scheduled within the data processing scheduler

// Iterate through the list, and invoke the cancel method for
// each activity
}

ModifySchedule - Modify the activities that have been scheduled from the plan within the
data processing scheduler. The attributes of the activity that may be modified are priority
and the anticipated start / stop times of the activity used to set the alarms in the data
processing scheduler. Any greater modification should be managed by canceling the
activity and scheduling a new activity.
Arguments:
Return Type: void
Privilege: Public
PDL:{
// Create an ordered list of activities which are within the plan
// and have been scheduled within the data processing scheduler

// Iterate through the list, and invoke the modify method for
// each activity
}

PlActivePlan - Creator method for the active plan
Arguments:
Return Type: PlActivePlan
Privilege: Public

PlActivePlan - Recreates the active plan from the DBMS given an identifier for that plan.
Arguments: int: PlanID
Return Type: PlActivePlan
Privilege: Public

4-24 305-CD-010-001

StatusSchedule - Status the plan against the schedule active in the data processing
scheduler.
Arguments:
Return Type: void
Privilege: Public
PDL:{
// Create an ordered list of activities which are within the plan
// and have been scheduled within the data processing scheduler

// Iterate through the list, and invoke the status method for
// each activity -- this is reflected within the activity object
// and DBMS

// Update the plan accordingly
}

~PlActivePlan - Destructor method for the active plan.
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlActivePlan class has associations with the following classes:
Class: PlActivities

4.4.21 PlActivities Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This class is a container class for activities in the PDPS database. This class may be
implemented by a suitable Rogue Wave template class.

Attributes:

None

4-25 305-CD-010-001

Operations:

Add - Add an activity to the collection
Arguments: PlActivity: activity
Return Type: void
Privilege: Public

Delete - Delete an activity from the collection.
Arguments: PlActivity: activity
Return Type: void
Privilege: Public

First - Returns the first activity within the collection.
Arguments:
Return Type: PlActivity
Privilege: Public

Next - Returns the next activity within the collection (or NULL if no more activities).
Arguments:
Return Type: PlActivity
Privilege: Public

PlActivities - Constructor for the container class.
Arguments:
Return Type: void
Privilege: Public

SelectActivatedActivities - Select those activities within the plan that have been activated,
i.e. those scheduled within the data processing scheduler.
Arguments:
Return Type: void
Privilege: Public

SelectActivities - Builds the collection for all activities within the plan that lies within the
time interval specified.
Arguments: Interval: interv
Return Type: void
Privilege: Public

~PlActivities - Destructor method.
Arguments:
Return Type: void
Privilege: Public

4-26 305-CD-010-001

Associations:

The PlActivities class has associations with the following classes:
Class: PlActivePlan

4.4.22 PlActivity Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
This class describes an item within a plan. The activity class is a base class within a
specialization heirachy descrining the different activities which occur in the production
plan.

Attributes:

myPredictedStart - The predicted start time of an activity
Data Type: Time
Privilege: Private
Default Value:

myPredictedStop - The predicted end time of an activity.
Data Type: Time
Privilege: Private
Default Value:

myPriority - Priority of the activity within the plan.
Data Type: int
Privilege: Private
Default Value:

Operations:

Cancel - Abstract operation for the cancelling of an activity within the Data Processing
subsystem.
Arguments:
Return Type: void
Privilege: Public
This is an abstract operation

4-27 305-CD-010-001

Modify - Abstract operation for the modification of an activity within the Data Processing
subsystem.
Arguments:
Return Type: void
Privilege: Public
This is an abstract operation

Schedule - Abstract operation for the scheduling of an activity within the Data Processing
subsystem.
Arguments:
Return Type: void
Privilege: Public
This is an abstract operation

Status - Abstract operation for the statusing of an activity from the Data Processing
subsystem.
Arguments:
Return Type: void
Privilege: Public
This is an abstract operation

Associations:

The PlActivity class has associations with the following classes:
Class: PlPlan

4.4.23 PlAddressFile Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This class represents a list of recipients to be informed when a new plan is published. The
object oriented notation is used so that this element can be captured in the design, however
this class will probably be implemented by a simple text file to be read by the publish script.
These components will be replaced when the document data server supports subscriptions
to published plans.

4-28 305-CD-010-001

Attributes:

myEmailAddress - Email address for recipient to be informed of a new script
Data Type: String
Privilege: Private
Default Value:

Operations:

None

Associations:

The PlAddressFile class has associations with the following classes:
Class: PlPublishScript

4.4.24 PlApplication Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
A base class for application programs describing name, version etc.

4-29 305-CD-010-001

Attributes:

myMajorVersionId - Application major version number
Data Type: int
Privilege: Private
Default Value:
This is a Constant.

myMinorVersionId - Software minor version id
Data Type: int
Privilege: Private
Default Value:
This is a Constant.

myName - Application name
Data Type: String
Privilege: Private
Default Value:
This is a Constant.

Operations:

GetName - Operation to retreive the application name
Arguments: String *name
Return Type: void
Privilege: Public

GetVersion - Operation to retrieve the application version number
Arguments: int *maj, int *min
Return Type: void
Privilege: Public

Associations:

The PlApplication class has associations with the following classes:
Class: PlUser

4-30 305-CD-010-001

4.4.25 PlComputer Class

Parent Class: PlResource
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
This class describes the computers which are part of the resource configuration for the
production system.

Attributes:

/ myMaxDiskSpace - Derived max disk space
Data Type: int
Privilege: Private
Default Value:
This is a Derived Attribute.

myCPUs - The number of CPUs within the computer
Data Type: int
Privilege: Private
Default Value:

myDiskList - Describes the disks associated with the computer.
Data Type: List
Privilege: Private
Default Value:

myOperatingSystem - The operating system name and version
Data Type: String
Privilege: Private
Default Value:

myPerProcessRam - The operating system's allocation of ram per process
Data Type: int
Privilege: Private
Default Value:

myTotalRam - The total Ram for the computer
Data Type: int
Privilege: Private
Default Value:

4-31 305-CD-010-001

Operations:

AddDisk - Add a disk to the list
Arguments: PlDisk
Return Type: void
Privilege: Public

PlComputer - Class constructor
Arguments:
Return Type: void
Privilege: Public

RemoveDisk - remove a disk from the list
Arguments: PlDisk
Return Type: void
Privilege: Public

~PlComputer - Class destructor
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlComputer class has associations with the following classes:
Class: PlDiskPartition
Class: PlString

4.4.26 PlDBMSProxyAgent Class

Parent Class: PlApplication
Public: NoDistributed Object: No
Purpose and Description:
This class describes the main body for the proxy agent required to manage the lifecycle
services of the PDPS DBMS. The proxy agent will be an almost template re-use of the
MSS capabilities.

4-32 305-CD-010-001

Attributes:

All Attributes inherited from parent class

Operations:

Init - Initializes the proxy agent.
Arguments:
Return Type: void
Privilege: Public

Shutdown - Shuts down the PDPS database server.
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlDBMSProxyAgent class has associations with the following classes:
Class: MsManager isaserver

4.4.27 PlDBMSProxyAgentCallbacks Class

Parent Class: MsMgCallbacks
Public: NoDistributed Object: No
Purpose and Description:
Specialization class to provide the DBMS proxy agent callbacks to the MsManager in order
to be activated for the appropriate lifecycle services (shutdown, resume, suspend notify).

Attributes:

All Attributes inherited from parent class

Operations:

NotifyCb - Notify callback not used at Release A. A null method will be provided.
Arguments:
Return Type: void
Privilege: Public

4-33 305-CD-010-001

ResumeCb - Resume not supported at Release A.
Arguments:
Return Type: void
Privilege: Public

ShutdownCb - Shutdown invokes the DBMS proxy agent shutdown method, which
invokes the appropriate sybase shutdown procedure.
Arguments:
Return Type: void
Privilege: Public

SuspendCb - Suspend not supported at Release A
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlDBMSProxyAgentCallbacks class has associations with the following classes:
None

4.4.28 PlDPR Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
This class describes an individual run of a PGE.

Attributes:

myActualStart - Actual start time from data processing
Data Type: Time
Privilege: Private
Default Value:

myCompletionState - Status indicator describing active status of data processing request
Data Type: String
Privilege: Private
Default Value:

4-34 305-CD-010-001

myInputDataInstanceList - List describing all the input files required within for the PGE
Data Type: List
Privilege: Private
Default Value:

myOutputDataInstanceList - List describing all the output files to be produced by the
PGE
Data Type: List
Privilege: Private
Default Value:

myPGEJobID - Identifier returned from the data processing subsystem to define the job
Data Type: int
Privilege: Private
Default Value:

myPredictedStart - Predicted start time from plan activity
Data Type: Time
Privilege: Private
Default Value:

myPriority - Priority for the data processing request is inherited from the production
reqeust, but may be modified individually
Data Type: int
Privilege: Private
Default Value:

Operations:

Cancel - Cancel the DPR within the data processing job scheduler
Arguments:
Return Type: void
Privilege: Public
PDL:{
// calls the cancel DPR job method of the DpPrJobScheduler
}

CheckAvailability - Checks to see if all the data dependies for a DPR have been fulfilled.
Returns true or false.
Arguments:
Return Type: Boolean
Privilege: Public

4-35 305-CD-010-001

PDL:{
// set availability TRUE

// iterate through the input data list

// check the availability of the granule

// if data not avaialble set availability FALSE

// return availability
}

GetCommandString - returns the command string for the given data type, the command
string is used to build the data server insert / aquire request
Arguments: String:DataType
Return Type: String
Privilege: Public

GetInputDataList - Returns a pointer to the list of input data granules
Arguments:
Return Type: List
Privilege: Public

GetLogicalId - returns the logical identifier for the given data type. the logical identifier
is used to identify the data type within the science software and is requried for the
construction of the process control info file
Arguments: String:DataType
Return Type: int
Privilege: Public

GetNextInputData - Returns the next input data granule in the list
Arguments:
Return Type: PlDataGranule
Privilege: Public

GetNextOutputData - returns the next output data granule in the list
Arguments:
Return Type: PlDataGranule
Privilege: Public

GetOutputDataList - Returns a pointer to the list of output data granules
Arguments:
Return Type: List
Privilege: Public

4-36 305-CD-010-001

Modify - Modify the DPR within the data processing job scheduler. The attributes of the
DPR that may have been modified are priority and the anticipated start / stop times of the
DPR used to set the alarms in the data processing scheduler.
Arguments:
Return Type: void
Privilege: Public
PDL:{
// calls the modify DPR job method of the DpPrJobScheduler
}

PlDPR - Constructor method
Arguments:
Return Type: PlDPR
Privilege: Public

PlDPR - Overloaded constructor to recreate DPR from the PDPS DBMS.
Arguments: int DPRid
Return Type: PlDPR
Privilege: Public

Release - Releases the DPR within the data processing job scheduler. The DPR is released
when the data dependencies of that DPR have been fulfilled.
Arguments:
Return Type: void
Privilege: Public
PDL:{
// calls the release DPR job method of the DpPrJobScheduler
}

Schedule - schedule the DPR within the data processing job scheduler
Arguments:
Return Type: void
Privilege: Public
PDL:{
// calls the create DPR job method of the DpPrJobScheduler
}

Status - status the DPR within the data processing job scheduler
Arguments:
Return Type: void
Privilege: Public
PDL:{

4-37 305-CD-010-001

// calls the status DPR job method of the DpPrJobScheduler
}

~PlDPR - Destructor method
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlDPR class has associations with the following classes:
Class: PlPGEActivity
Class: PlProductionRequest
Class: PlResourceRequirement
PlDPRs (Aggregation)

4.4.29 PlDPRs Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Purpose and Description:
This is a collector class for the PlDPR class, and contains methods to select Data Processing
Requests from the PDPS database and to iterate through them. This class may be
implemented by a suitable Rogue Wave template class.

Attributes:

None

Operations:

Add - Add a DPR to the collection
Arguments: PlDPR: dpr
Return Type: void
Privilege: Public

Delete - Delete an DPR from the collection.
Arguments: PlDPR: dpr
Return Type: void

4-38 305-CD-010-001

Privilege: Public

First - Returns the first DPR within the collection
Arguments:
Return Type: PlDPR
Privilege: Public

Next - Returns the next DPR within the collection (or NULL if no more activities).
Arguments:
Return Type: PlDPR
Privilege: Public

PlDPRs - Constructor method
Arguments:
Return Type: PlDPRs
Privilege: Public

SelectDPRs - Builds the collection for all DPRs within the plan that lies within the time
interval specified
Arguments: Interval
Return Type: void
Privilege: Public

~PlDPRs - Destructor method
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlDPRs class has associations with the following classes:
None

4.4.30 PlDataGranule Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
This class describes individual instances or granules of data types.

4-39 305-CD-010-001

Attributes:

myActualAvailability - Data and time that data was made available to subscription manager.
Data Type: Time
Privilege: Private
Default Value:

myAvailability - Flag to indicate availability of data.
Data Type: Boolean
Privilege: Private
Default Value:

myESDTParmVals - Selected metadata fields associated to the data type required to
determine suitability in the production (such as quality info or geophysical attributes).
Data Type: GlParameterList
Privilege: Private
Default Value:

myPredictedAvailability - Predicted time at which the data will be available in ECS, used
to determine PGE schedule estimates.
Data Type: Time
Privilege: Private
Default Value:

myStartTime - The start time and date of the data.
Data Type: Time
Privilege: Private
Default Value:

myStopTime - The stop time and date of the data.
Data Type: Time
Privilege: Private
Default Value:

myUR - Universal Reference by which to reference the granule within the data server.
Data Type: GlUR
Privilege: Private
Default Value:

4-40 305-CD-010-001

Operations:

Create - Create a entry in the DBMS if this is a unique instance of the granule
Arguments: Time:start, Time:stop
Return Type: void
Privilege: Public

FindAssociatedDPRs - Method to determine the data processing requests associated to the
data granule.
Arguments:
Return Type: PlDPRs
Privilege: Public

GetAvailability - Returns whether the data item is available within the ECS or not.
Arguments:
Return Type: Boolean
Privilege: Public

PlDataGranule - Constructor method
Arguments:
Return Type: PlDataGranule
Privilege: Public

RegisterAvailability - Method to register that a data instance that was predicted has
arrived, and to record the UR and metadata associated to that data
Arguments: GlUR:instUR, GlParameterList: instESDTParmVals
Return Type: void
Privilege: Public

~PlDataGranule - Destructor method
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlDataGranule class has associations with the following classes:
Class: PlDPR input
Class: PlDPR output
Class: PlDataType populates

4-41 305-CD-010-001

4.4.31 PlDataGranule Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
This class describes individual instances or granules of data types.

Attributes:

myActualAvailability - Data and time that data was made available to subscription manager.
Data Type: Time
Privilege: Private
Default Value:

myAvailability - Flag to indicate availability of data.
Data Type: Boolean
Privilege: Private
Default Value:

myESDTParmVals - Selected metadata fields associated to the data type required to
determine suitability in the production (such as quality info or geophysical attributes).
Data Type: GlParameterList
Privilege: Private
Default Value:

myPredictedAvailability - Predicted time at which the data will be available in ECS, used
to determine PGE schedule estimates.
Data Type: Time
Privilege: Private
Default Value:

myStartTime - The start time and date of the data.
Data Type: Time
Privilege: Private
Default Value:

myStopTime - The stop time and date of the data.
Data Type: Time
Privilege: Private
Default Value:

myUR - Universal Reference by which to reference the granule within the data server.
Data Type: GlUR

4-42 305-CD-010-001

Privilege: Private
Default Value:

Operations:

Create - Create a entry in the DBMS if this is a unique instance of the granule
Arguments: Time:start, Time:stop
Return Type: void
Privilege: Public

FindAssociatedDPRs - Method to determine the data processing requests associated to the
data granule.
Arguments:
Return Type: PlDPRs
Privilege: Public

GetAvailability - Returns whether the data item is available within the ECS or not.
Arguments:
Return Type: Boolean
Privilege: Public

PlDataGranule - Constructor method
Arguments:
Return Type: PlDataGranule
Privilege: Public

RegisterAvailability - Method to register that a data instance that was predicted has
arrived, and to record the UR and metadata associated to that data
Arguments: GlUR:instUR, GlParameterList: instESDTParmVals
Return Type: void
Privilege: Public

~PlDataGranule - Destructor method
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlDataGranule class has associations with the following classes:
Class: PlDPR
Class: PlDataType

4-43 305-CD-010-001

4.4.32 PlDataScheduled Class

Parent Class: PlPGE
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
This specialization of the PGE accounts for the classification of PGEs whereby the PGE
scheduling is determined from some regular time period, such as an hour, a day, a week, a
month etc.

Attributes:

myInputDataId - ID of the input data based on the arrival of which the PGE is scheduled to
run
Data Type: int
Privilege: Private
Default Value:

myNoOfInstancesPerPgeRun - ID of the input data based on the arrival of which the PGE
is scheduled to run
Data Type: int
Privilege: Private
Default Value:

myPrimaryDataSource - Identifies the source of the data
Data Type: String
Privilege: Private
Default Value:

Operations:

GenerateDPRs - Generate the data processing request that fulfill the production request
Arguments: PlProductionRequest
Return Type: void
Privilege: Public
PDL:{
// Select the primary input granules that are within the period of
// the production request

4-44 305-CD-010-001

// Generate a DPR for each myNoOfInstancesPerPgeRun granules
// of input data

// Invoke the select data method for the DPR
}

Associations:

The PlDataScheduled class has associations with the following classes:
None

4.4.33 PlDataSource Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
This class is the base class that provides the methods for predicting when external data will
arrive within the ECS from SDPF or NOAA for example. The Data Sources are specialized
to describe the different ways that predictions are obtained.

Attributes:

myPredictedMethod - Describes the method by which the data availability prediction occurs
- e.g., routine arrival, arrival at scheduled times, FOS based prediction.
Data Type: enum
Privilege: Private
Default Value:

mySupplierName - Identifies the supplier of the data.
Data Type: String
Privilege: Private
Default Value:

4-45 305-CD-010-001

Operations:

PredictArrivals - Predicts data instance arrivals for a given period.
Arguments: Start:Time, Stop:Time
Return Type: void
Privilege: Public
This is an abstract operation

Associations:

The PlDataSource class has associations with the following classes:
Class: PlDataType

4.4.34 PlDataType Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
This class describes a data type known to the planning subsystem. This is a description of
an input or output type, distinct to a granule or instance of the data type. The class is an
abstraction or proxy that describes one of the Data Server ESDTs. The class captures data
and operations that are required to subscribe and receive notification from the Data Server
when a new instance of the Data Type arrives.

Attributes:

myCatalogueCatagory - Catalogue catagory indicates whether the Data Type is valid for a
production request, which would indicate it is generated from a PGE at a site, otherwise the
Data Type is some intermediate file, or input file received from another site.
Data Type: String
Privilege: Private
Default Value:

myDServURString - Universal Reference to identify Data Server providing services
(retreive, insert, inspect) for the Data Type.
Data Type: String
Privilege: Private
Default Value:

4-46 305-CD-010-001

myDescription - This attribute provides a text description for the Data Type
Data Type: String
Privilege: Private
Default Value:

myDynamicFlag - Indicates whether the Data Type is dynamic or static. Examples of
dynamic are L0, L1 data sets etc. with a frequest update time. Examples of static are
calibration files which only change with a new version of a PGE.
Data Type: Boolean
Privilege: Private
Default Value:

myESDTParmList - A parameter list used within the inspect to the Data Server, to retreive
the metadata associated to a newly arrived instance of the Data Type.
Data Type: GlParameterList
Privilege: Private
Default Value:

myInstrumentName - Instrument name associated with PGE
Data Type: String
Privilege: Private
Default Value:

myLogicalID - Attribute describes the logical id by which this data type is indexed within
a PGE
Data Type: int
Privilege: Private
Default Value:

myName - Attribute describes the ESDT Name for the data set within the Data Server.
Data Type: String
Privilege: Private
Default Value:

myNominalSize - Nominal size of the data type
Data Type: float
Privilege: Private
Default Value:

myQASubscription - Captures whether a subscription has been set up for the QA of this
data type.
Data Type: Boolean
Privilege: Private
Default Value:

4-47 305-CD-010-001

mySatelliteName - Satellite name associated to PGE
Data Type: String
Privilege: Private
Default Value:

mySubscriptionFile - File required by the receiver communications software to provide
persistance store for the messages so that messages are captured in case of software failure.
Data Type: File
Privilege: Private
Default Value:

mySubscriptionQueue - A unique name associated to the communications queue used to
receive subscription notification from the data server.
Data Type: String
Privilege: Private
Default Value:

Operations:

FindDataAvailability - Ensures that the Data Granules that are required to fulfill a production
request are captured in the PDPS database
Arguments: Interval
Return Type: void
Privilege: Public
PDL:{
// For any period of the interval before the current time
// construct and submit query to the data server with the holdings
// for that data type

// Generate an instance of the PlDataGranule for each hit returned
// from the query, making sure that granule is not previously
// within the list

// For any period after the last recorded granule returned
// from the data server invoke the appropriate prediction
// method from the PlDataSource class
}

InspectDataArrival - Creates a UR from the notification message received and uses the
UR to extract the requried metadata (ESDT parameter list) from the Data Server.
Arguments:
Return Type: void
Privilege: Public

4-48 305-CD-010-001

InstallReceiver - Install a receiving queue in which to receive notification of subscription
from the Data Server.
Arguments:
Return Type: void
Privilege: Public

MatchDataArrival - Match the data arrival with the predictions within Data Granule table.
Arguments:
Return Type: void
Privilege: Public

RegisterDataArrival - Procedure to be called on notification of data arrival, this a control
procedure that manages the inspection of the data, comparison to the data instances, and
then subsequent handling of associated DPRs to the arrived data.
Arguments:
Return Type: void
Privilege: Public

SetSubscriptionQueue
Arguments: String:QueueName
Return Type: void
Privilege: Public

Associations:

The PlDataType class has associations with the following classes:
Class: DsClQuery
Class: PlDataSource
Class: PlPGE
Class: PlDataGranule populates

4.4.35 PlDataTypeCatalogue Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This class describes a collection that lists the data types that may be generated by the
production system. The class is constructed from the PlDataTypes class using the
catalogue catagory attribute from that class.

4-49 305-CD-010-001

Attributes:

None

Operations:

CatalogueRequest - Request to retrieve all data types the ECS site is capable of generating.
Arguments:
Return Type: catalogue:char*
Privilege: Public

RetrieveDefPGE - Retrieves the default PGE and version corresponding to a product.
Arguments: ProductType:String
Return Type: DefPGEName:String
Privilege: Public

Associations:

The PlDataTypeCatalogue class has associations with the following classes:
Class: PlProductionRequestUI

4.4.36 PlDataTypeReq Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
This class contains the data that associates a PGE to an input data type.

Attributes:

myCommandString - This string is used to construct the acquire command for the data type,
used to stage the data from the data server.
Data Type: String
Privilege: Private
Default Value:

myDataTypeReq - This attribute specifies the data type requirement of a PGE. The string
specifies the select statement to be applied to the Data Granule table, to determine the input
Data Granules for a given Data Processing Request.

4-50 305-CD-010-001

Data Type: String
Privilege: Private
Default Value:

myLogicalID - The logical id relates to the PGE input identifier for a particular product
type. This attribute is required within the SDP toolkit process control interface.
Data Type: int
Privilege: Private
Default Value:

myQAThreshold - This attribute describes the quality threshold to be applied to the data
granules to "approve" their suitability for production before releasing a scheduled PGE.
The threshold is specified in terms of the ESDT parameter list of the data type.
Data Type: String
Privilege: Private
Default Value:

Operations:

None

Associations:

The PlDataTypeReq class has associations with the following classes:
None

4.4.37 PlDataTypes Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
The class provides for a collection of Data Type objects selected from the PDPS database
and suitable services to iterate over the collection. The class will be implemented using a
suitable collection class from Rogue Wave.

Attributes:

None

4-51 305-CD-010-001

Operations:

First - Returns the first Data Type from the collector
Arguments:
Return Type: PlDataType
Privilege: Public

Next - Returns the next Data Type from the collector
Arguments:
Return Type: PlDataType
Privilege: Public

SelectSubscribedTypes - Operation to initiate selection from PDPS database of
DataTypes which have subscriptions to a Data Server.
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlDataTypes class has associations with the following classes:
Class: PlSubscriptionManager registersnotificationof

4.4.38 PlDiskPartition Class

Parent Class: PlResource
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
This class describes the disk resources for data production

Attributes:

myBlockSize - the block size for the partition
Data Type: int
Privilege: Private
Default Value:

myDeviceID - specifies the UNIX device id for the partition
Data Type: String

4-52 305-CD-010-001

Privilege: Private
Default Value:

myPartitionSize - the total partition size
Data Type: int
Privilege: Private
Default Value:

mySysAlloction - the size of allocation of the partition for system usage
Data Type: int
Privilege: Private
Default Value:

myUserAllocation - the size of allocation of the partition for production usage
Data Type: int
Privilege: Private
Default Value:

Operations:

All Operations inherited from parent class

Associations:

The PlDiskPartition class has associations with the following classes:
Class: PlComputer

4.4.39 PlFOSPrecictedArrival Class

Parent Class: PlDataSource
Public: NoDistributed Object: No
Purpose and Description:
This object will not be developed for the TRMM release, it is shown as a placeholder for
AM-1 when the data availability prediction may be built from the FOS APS schedules

Attributes:

All Attributes inherited from parent class

4-53 305-CD-010-001

Operations:

PredictArrivals - Predicts data instance arrivals for a given period.
Arguments: Start:Time, Stop:Time
Return Type: void
Privilege: Public

Associations:

The PlFOSPrecictedArrival class has associations with the following classes:
None

4.4.40 PlGroundActivity Class

Parent Class: PlActivity
Public: NoDistributed Object: No
Purpose and Description:
This class is a generalization of the PlActivity class. The class describes a Ground Event
within the plan.

Attributes:

All Attributes inherited from parent class

Operations:

Cancel - Cancel the activity
Arguments:
Return Type: void
Privilege: Public
PDL:{
// calls the cancel method of the Ground Event
}

Modify - Modify the activity
Arguments:
Return Type: void
Privilege: Public
PDL:{
// calls the modify method of the Ground Event

4-54 305-CD-010-001

}

PlGroundActivity - Constructor method
Arguments:
Return Type: PlGroundActivity
Privilege: Public

PlGroundActivity - Create an activity from the Ground Event object
Arguments: PlGroundEvent
Return Type: PlGroundActivity
Privilege: Public

Schedule - Schedule the activity
Arguments:
Return Type: void
Privilege: Public
PDL:{
// calls the schedule method of the Ground Event
}

Status - Status the activity
Arguments:
Return Type: void
Privilege: Public
PDL:{
// calls the status method of the Ground Event
}

~PlGroundActivity - Destructor method
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlGroundActivity class has associations with the following classes:
Class: PlGroundEvent

4-55 305-CD-010-001

4.4.41 PlGroundEvent Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
This class describes a Ground Event which is recorded in the PDPS database. A Ground
Event marks the allocation of resources to some none-production task such as
maintainance.

Attributes:

myDescription - This attribute provides storage for a text description of a ground event
Data Type: String
Privilege: Private
Default Value:
This is a Constant.

myDuration - This attribute describes the duration of the Ground Event
Data Type: Time
Privilege: Private
Default Value:
This is a Constant.

myName
Data Type: String
Privilege: Private
Default Value:

myPriority - This attribute describes the priority of the Ground Event.
Data Type: int
Privilege: Private
Default Value:
This is a Constant.

myTemplateFlag - This attribute describes whether the ground event is to be saved as a
template description of a ground events. Ground Events with this attribute True will be
retained in the PDPS database. Those with this attribute as False will automatically be
deleted a month after the completion date of the Ground Event.
Data Type: Boolean
Privilege: Private
Default Value: False
This is a Constant.

4-56 305-CD-010-001

myWinEndTime - This attribute describes the end time of the window of opportunity for
when the Ground Event may be planned
Data Type: Time
Privilege: Private
Default Value:
This is a Constant.

myWinStartTime - This attribute describes the start time of the window of opportunity for
when the Ground Event may be planned
Data Type: Time
Privilege: Private
Default Value:
This is a Constant.

Operations:

Cancel - Cancel the Ground Event within the data processing job scheduler
Arguments:
Return Type: void
Privilege: Public
PDL:{
// calls the cancel Ground Event method of the DpPrJobScheduler
}

Create - Create an ground event in the PDPS database
Arguments:
Return Type: void
Privilege: Public

Delete - Delete the ground event from the PDPS database
Arguments:
Return Type: void
Privilege: Public

Modify - Modify the Ground Event within the data processing job scheduler. The
attributes of the Ground Event that may have been modified are priority and the anticipated
start / stop times of the DPR used to set the alarms in the data processing scheduler.
Arguments:
Return Type: void
Privilege: Public
PDL:{
// calls the modify Ground Event job method of the DpPrJobScheduler
}

4-57 305-CD-010-001

PlGroundEvent - Constructor method
Arguments:
Return Type: PlGroundEvent
Privilege: Public

Schedule - Schedule the Ground Event within the data processing job scheduler
Arguments:
Return Type: void
Privilege: Public
PDL:{
// calls the create Ground Event job method of the DpPrJobScheduler
}

Status - Status the Ground Event within the data processing job scheduler
Arguments:
Return Type: void
Privilege: Public
PDL:{
// calls the status Ground Event job method of the DpPrJobScheduler
}

~PlGroundEvent - Destructor method
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlGroundEvent class has associations with the following classes:
Class: DpPrScheduler
Class: PlGroundActivity

4.4.42 PlGroundEvents Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This is a collector class for the PlGroundEvent class, and contains methods to select
Ground Events from the PDPS database and to iterate through them. This class may be

4-58 305-CD-010-001

implemented by a suitable Rogue Wave template class

Attributes:

None

Operations:

Add - Add a Ground Event to the collection
Arguments: PlGroundEvent: event
Return Type: void
Privilege: Public

Delete - Delete a Ground Event from the collection
Arguments: PlGroundEvent: event
Return Type: void
Privilege: Public

First - Returns the first Ground Event within the collection.
Arguments:
Return Type: PlGroundEvent
Privilege: Public

Next - Returns the next Ground Event within the collection (or NULL if no more activities).
Arguments:
Return Type: PlGroundEvent
Privilege: Public

SelectEvents - Builds the collection for all Ground Events within the PDPS database that
lie within the time interval specified.
Arguments: Interval
Return Type: void
Privilege: Public

Associations:

The PlGroundEvents class has associations with the following classes:
None

4-59 305-CD-010-001

4.4.43 PlOutputYield Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
Specifies the recipe to describe the output data granules for a PGE.

Attributes:

myCommandString - This string is used to construct the insert command for the data type,
used to destage the data to the data server.
Data Type: String
Privilege: Private
Default Value:

myLogicalID - The logical id relates to the PGE output identifier for a particular product
type. This attribute is required within the SDP toolkit process control interface.
Data Type: int
Privilege: Private
Default Value:

myYield - Describes the number of data granules produced from the Data Processing
Request. These are assumed to be evenly distributed in time accross the acquisition
processing time of the DPR.
Data Type: float
Privilege: Private
Default Value:

Operations:

None

Associations:

The PlOutputYield class has associations with the following classes:
None

4-60 305-CD-010-001

4.4.44 PlPGE Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
This is the base class within a generalization heirachy that describes PGEs. The class
defines abstract operations required for the planning subsystem to work out when a PGE
needs to be scheduled. As well as containing the key attributes defining the PGE.

Attributes:

myInputDataTypeList - List of input data types needed by the PGE
Data Type: List
Privilege: Private
Default Value:

myInstrument - Instrument for which the PGE is appropriate
Data Type: String
Privilege: Private
Default Value:

myOutputDataTypeList - List of output data types needed by the PGE
Data Type: List
Privilege: Private
Default Value:

myPGEName - Name of the PGE
Data Type: String
Privilege: Private
Default Value:

myPGEVersion - Version number of the PGE
Data Type: float
Privilege: Private
Default Value:

myPlatform - Platform for which the PGE is appropriate, may be a list
Data Type: String
Privilege: Private
Default Value:

myTestOperational - Indicates if the PGE's status is test or operational
Data Type: enum

4-61 305-CD-010-001

Privilege: Private
Default Value:

Operations:

Delete - Delete the PGE from the PDPS database
Arguments:
Return Type: void
Privilege: Public

FindDataAvailability -
Arguments: Interval
Return Type: void
Privilege: Public
PDL:{
// Iterates over the input data type list invokes the
// Find Data Availability method for each input type
}

GenerateDPRs - Generate the Data Processing Requests to fulfill the Production Request.
Arguments: PlProductionRequest
Return Type: void
Privilege: Public
This is an abstract operation

Modify
Arguments: TestOrOper:enum
Return Type: void
Privilege: Public

PlPGE - Constructor method
Arguments:
Return Type: PlPGE
Privilege: Public

PlPGE - Construct the PGE from the PDPS database
Arguments: int PGEid
Return Type: PlPGE
Privilege: Public

UpdateVersion - Update the version of the PGE
Arguments:

4-62 305-CD-010-001

Return Type: void
Privilege: Public

~PlPGE - Destructor method
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlPGE class has associations with the following classes:
Class: PlDPR
Class: PlDataType
Class: PlProductionRequest

4.4.45 PlPGEActivity Class

Parent Class: PlActivity
Public: NoDistributed Object: No
Purpose and Description:
This class is a generalization of the PlActivity class. The class describes a Data Processing
Request - a run of a PGE - within the plan.

Attributes:

All Attributes inherited from parent class

Operations:

Cancel - Cancel the activity
Arguments:
Return Type: void
Privilege: Public
PDL:{
// calls the cancel method of the Data Processing Request
}

Modify - Modify the activity
Arguments:
Return Type: void

4-63 305-CD-010-001

Privilege: Public
PDL:{
// calls the modify method of the Data Processing Request
}

PlPGEActivity - Constructor method
Arguments:
Return Type: PlPGEActivity
Privilege: Public

PlPGEActivity - Constructs an activity within the plan for the Data Processing Request
Arguments: PlDPR
Return Type: PlPGEActivity
Privilege: Public

Schedule - Schedule the activity
Arguments:
Return Type: void
Privilege: Public
PDL:{
// calls the schedule method of the Data Processing Request
}

Status - Modify the activity
Arguments:
Return Type: void
Privilege: Public
PDL:{
// calls the modify method of the Data Processing Request
}

~PlPGEActivity - Destructor method
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlPGEActivity class has associations with the following classes:
Class: PlDPR

4-64 305-CD-010-001

4.4.46 PlPGEProfile Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Purpose and Description:
This class describes the collection of information that describes a PGE to the Planning
subsystem.

Attributes:

None

Operations:

$PlPGEProfile - Constructor function
Arguments: ...
Return Type: void
Privilege: Public

DeletePGEProfile - Deletes a given PGE profile
Arguments: PGEProfID:int
Return Type: void
Privilege: Public

ModifyPGEProfile - Modifies a given PGE profile
Arguments: PGEProfId:int, ModType:enum, ModField:String, ModValue:String
Return Type: void
Privilege: Public

RetrievePGEProfile - Retrieves a given PGE profile
Arguments: PlPGEProfID
Return Type: void
Privilege: Public

~PlPGEProfile - Destructor function
Arguments: ...
Return Type: void
Privilege: Public

4-65 305-CD-010-001

Associations:

The PlPGEProfile class has associations with the following classes:
None

4.4.47 PlPerformance Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
This class describes the performance statistcs of a PGE. These performance statistics are
established at AI&T. The class also contains attributes to describe the statistics updated
from the Data Processing subsystem.

Attributes:

myElapsedTime - Elapsed time for the PGE during AI&T
Data Type: Time
Privilege: Private
Default Value:

myMaxMemoryUse - Maximum memory required by the PGE during AI&T
Data Type: float
Privilege: Private
Default Value:

myNoOfBlockInOper - Number of input blocks for the PGE during AI&T
Data Type: int
Privilege: Private
Default Value:

myNoOfBlockOutOper - Number of output blocks for the PGE during AI&T
Data Type: int
Privilege: Private
Default Value:

myNoOfPageFaults - Number of PGE page faults for the PGE during AI&T
Data Type: int
Privilege: Private
Default Value:

4-66 305-CD-010-001

myNoOfSwaps - Number of PGE swaps for the PGE during AI&T
Data Type: int
Privilege: Private
Default Value:

myPGECPUTime - CPU required for the PGE during AI&T
Data Type: Time
Privilege: Private
Default Value:

myRunElapsedTime - Elapsed time for the PGE during production
Data Type: Time
Privilege: Private
Default Value:

myRunMaxMemoryUse - Maximum memory required by the PGE during production
Data Type: float
Privilege: Private
Default Value:

myRunNoOfBlockInOper - Number of input blocks for the PGE during production
Data Type: int
Privilege: Private
Default Value:

myRunNoOfBlockOutOper
Data Type: int
Privilege: Private
Default Value:

myRunNoOfPageFaults - Number of PGE page faults for the PGE during production
Data Type: int
Privilege: Private
Default Value:

myRunNoOfSwaps - Number of PGE swaps for the PGE during production
Data Type: int
Privilege: Private
Default Value:

myRunPGUCPUTime - CPU required for the PGE during production
Data Type: Time
Privilege: Private
Default Value:

4-67 305-CD-010-001

myRunSharedMemoryUse - Shared memory required by the PGE during production
Data Type: float
Privilege: Private
Default Value:

mySharedMemoryUse - Shared memory required by the PGE during AI&T
Data Type: float
Privilege: Private
Default Value:

Operations:

UpdateRunTimePerfPar
Arguments: ParId:int, ParValue:String
Return Type: Void
Privilege: Public

Associations:

The PlPerformance class has associations with the following classes:
PlPGEProfile (Aggregation)

4.4.48 PlPlan Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
This class represents an abstraction for a production plan. The class describes the metadata
that will be stored for a plan within the PDPS database. The operations shown are an
abstraction for those used within the planning framework.

Attributes:

myActiveStatus - Indicator to identify active plan
Data Type: Boolean
Privilege: Private
Default Value: False

4-68 305-CD-010-001

myDescription - Descriptive text for operator comments describing conditions under
which the plan was generated.
Data Type: String
Privilege: Private
Default Value:

myEndTime - End time for the plan
Data Type: Time
Privilege: Private
Default Value:

myPlanName - Descriptive name for plan to facilitate plan selection.
Data Type: String
Privilege: Private
Default Value:

myStartTime - Start time for the plan
Data Type: Time
Privilege: Private
Default Value:

Operations:

CreatePlan - Create an entry in the PDPS database describing the Plan
Arguments:
Return Type: void
Privilege: Public

DeletePlan - Deletes the plan from the PDPS database along with the associated activities.
Arguments:
Return Type: void
Privilege: Public

PlanProductionRequest - Adds the Data Processing Requests associated to a Production
Plan. This involves creating an activity within the plan to describe the DPR, and allocating
resources for the DPR.
Arguments: PlProductionRequest: PR
Return Type: void
Privilege: Public

PlanSchedule - This operation is an abstraction that describes the planning process by
which activities are associated to resources in order to set out a time-line for the plan.
Arguments:

4-69 305-CD-010-001

Return Type: void
Privilege: Public

Publish - Initiates the activities involved in publishing a plan.
Arguments:
Return Type: void
Privilege: Public

UnplanProductionRequest - Remove the activities associated with a particular
production request from the plan.
Arguments: PlProductionRequest: PR
Return Type: void
Privilege: Public

UpdatePlan - Updates the plan from the status of the activities in the PDPS database.
Arguments:
Return Type: void
Privilege: Public
PDL:{
// Create an ordered list of the Ground Events that are in the plan

// Verify whether any new ground events have been added
// If so alert operator, with option of including event

// Regenerate the plan
}

Associations:

The PlPlan class has associations with the following classes:
Class: PlActivity
Class: PlProductionPlannersUI

4.4.49 PlPlanASCIIReportFile Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This class represents an ascii readable externalized report format of the plan. The precise
format of this report is TBD. The report will provide a summary view of the tasks planned
(no. of particular product types generated within the plan period) as well as a prediction of

4-70 305-CD-010-001

the generation time for each product.

Attributes:

None

Operations:

Write
Arguments:

Associations:

The PlPlanASCIIReportFile class has associations with the following classes:
PlPublishedPlan (Aggregation)

4.4.50 PlPlanBinaryReportFile Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This class represents an electronic parsable report format of the plan. The precise format of
this report is TBD. The report will provide a summary view of the tasks planned (no. of
particular product types generated within the plan period) as well as a prediction of the
generation time for each product.

Attributes:

None

Operations:

Write
Arguments:

Associations:

4-71 305-CD-010-001

The PlPlanBinaryReportFile class has associations with the following classes:
PlPublishedPlan (Aggregation)

4.4.51PlPlanGenerationUI Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This class is an abstraction for the user interface to the planning workbench application.
The class shows the functions available to the production scheduler in support of generating
a plan

Attributes:

None

Operations:

AddPRtoPlan - Add the Data Processing Requests associated to a Production Requests to a
plan.
Arguments: PlProductionRequest: PR
Return Type: void
Privilege: Public

DelPRfromPlan - Delete the Data Production Requests associated to a Production Request
from a plan.
Arguments: PlProductionRequest: PR
Return Type: void
Privilege: Public

NewPlan - Generate a new plan
Arguments:
Return Type: void
Privilege: Public

SelectPlan - Select a plan for modification or activation
Arguments:
Return Type: void
Privilege: Public

4-72 305-CD-010-001

Associations:

The PlPlanGenerationUI class has associations with the following classes:
Class: PlProductionRequest
PlPlanningWorkbenchUI (Aggregation)

4.4.52 PlPlanMetadataFile Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This class represents the metadata that will be used to describe the plan within the
Document Data Server. The format of this report will be a Parameter=Value list line
separated.

Attributes:

myDAAC - The site at which the plan was produced
Data Type: String
Privilege: Private
Default Value:

myDataSets - Describes the data sets which are planned for production within the plan.
Data Type: String
Privilege: Private
Default Value:

myDescription - Captures the operators description of the purpose of the plan (for example
30 day forecast)
Data Type: String
Privilege: Private
Default Value:

myEndDay - The end date of the plan
Data Type: Time
Privilege: Private
Default Value:

myForecast - The number if days time period which the plan covers
Data Type: int
Privilege: Private
Default Value:

4-73 305-CD-010-001

myStartTime - The start date of the plan
Data Type: Time
Privilege: Private
Default Value:

Operations:

None

Associations:

The PlPlanMetadataFile class has associations with the following classes:
PlPublishedPlan (Aggregation)

4.4.53 PlPlanningWorkbenchUI Class

Parent Class: PlApplication
Public: NoDistributed Object: No
Purpose and Description:
This class is an abstraction for the user interface to the planning workbench application.
The interface will be developed with a suitable GUI builder tool.

Attributes:

All Attributes inherited from parent class

Operations:

ProductionSchedulerCommands
Arguments:
Return Type: Void
Privilege: Public

ResourceManagerCommands
Arguments:
Return Type: Void
Privilege: Public

4-74 305-CD-010-001

Associations:

The PlPlanningWorkbenchUI class has associations with the following classes:
Class: PlPlan
Class: PlPublishScript

4.4.54 PlProductionPlannersUI Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This class is an abstraction for the user interface to the planning workbench application.
The interface will be developed with a suitable GUI builder tool. The class does describe
the basic operations that are provided from the interface.

Attributes:

PlanSelectionWindow
Data Type:
Privilege: Private
Default Value:

SchedulingPeriod
Data Type:
Privilege: Private
Default Value:

Operations:

ActivateSchedule
Arguments:
Return Type: Void
Privilege: Public

AddPRtoPlan
Arguments:
Return Type: Void
Privilege: Public

4-75 305-CD-010-001

CancelSchedule
Arguments:
Return Type: Void
Privilege: Public

DelPRfromPlan
Arguments:
Return Type: Void
Privilege: Public

DeletePlan
Arguments:
Return Type: Void
Privilege: Public

ModifySchedule
Arguments:
Return Type: Void
Privilege: Public

NewPlan
Arguments:
Return Type: Void
Privilege: Public

SelectPlan
Arguments:
Return Type: Void
Privilege: Public

StatusSchedule
Arguments:
Return Type: Void
Privilege: Public

Associations:

The PlProductionPlannersUI class has associations with the following classes:
Class: PlPlan

4-76 305-CD-010-001

4.4.55 PlProductionRequest Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
A production request describes an order for data sets, a production request typically
specifies a request for a Data Set to be produced for an extended period of time (e.g a
month's worth of some product).

Attributes:

myDataCollectionStartTime - Start time for the production request.
Data Type: Time
Privilege: Private
Default Value:

myDataCollectionStopTime - Stop time for the production request.
Data Type: Time
Privilege: Private
Default Value:

myOutputDataType - Identifies the product desired by the ECS User.
Data Type: String
Privilege: Private
Default Value:

myPGEIdentifier - Identifies the PGE
Data Type: String
Privilege: Private
Default Value:

myPriority - User requested priority for the submitted production request.
Data Type: int
Privilege: Private
Default Value:

Operations:

DefinePGERuns - Defines the production requests corresponding to the production request.
Arguments:
Return Type: Void

4-77 305-CD-010-001

Privilege: Public

Modify - Modifies the production request.
Arguments: ModField:String, ModVal:String
Return Type: Void
Privilege: Public

PlProductionRequest - Constructor for the PlProductionRequest class.
Arguments: Product:String, PGE:String, Start:Time, Stop:Time, Prior:int
Return Type: Void
Privilege: Public

RetrieveAllProdReq - Retrieves all the production requests currently in effect
Arguments:
Return Type: ProductionRequest *
Privilege: Public

Associations:

The PlProductionRequest class has associations with the following classes:
Class: PlDPR
Class: PlPGE
Class: PlProductionRequestUI

4.4.56 PlProductionRequestUI Class

Parent Class: PlApplication
Public: NoDistributed Object: No
Purpose and Description:
This class is an abstraction for the user interface to the production request editor
application.

Attributes:

All Attributes inherited from parent class

Operations:

AddProductionRequest
Arguments:

4-78 305-CD-010-001

Return Type: void
Privilege: Public

DelProductionRequest
Arguments:
Return Type: void
Privilege: Public

ModifyProductionRequest
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlProductionRequestUI class has associations with the following classes:
Class: PlDataTypeCatalogue
Class: PlProductionRequest

4.4.57 PlPublishScript Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This class depicts the script required to send a message to a preprepared list of users when
a new plan is published.

Attributes:

None

Operations:

Execute
Arguments:
Return Type: void
Privilege: Public

4-79 305-CD-010-001

Associations:

The PlPublishScript class has associations with the following classes:
Class: PlAddressFile
Class: PlPlanningWorkbenchUI

4.4.58 PlPublishedPlan Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This object encapsulates the methods requred to insert externalized formats of the plan into
the document data server

Attributes:

None

Operations:

InsertInDDS - Insert the published plan into the Document Data Server
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlPublishedPlan class has associations with the following classes:
Class: DsCtClient
Class: DsCtCommand
Class: PlPlan

4.4.59 PlResource Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:

4-80 305-CD-010-001

This class is the base class in a generalization heirachy describing the production resource.

Attributes:

myID - Unique identifier for the resource
Data Type: int
Privilege: Private
Default Value:

myName - The name of the resource
Data Type: String
Privilege: Private
Default Value:

Operations:

None

Associations:

The PlResource class has associations with the following classes:
PlResourceConfigeration (Aggregation)

4.4.60 PlResourceConfigeration Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This class describes the resource configuration of the Production Resources.

Attributes:

None

Operations:

BuildConfiguration - Build the resource configuration from the MSS services.
Arguments:
Return Type: void

4-81 305-CD-010-001

Privilege: Public

Associations:

The PlResourceConfigeration class has associations with the following classes:
Class: MsDAAC
Class: PlResourceManager

4.4.61 PlResourceManager Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This class represents an abstraction for the resource management capabilities used when
generating a plan, describing the operations required to match resource requirements of an
activity to the available resources, and to allocate the resource for the activity.

Attributes:

None

Operations:

AllocateResources - Allocate the resources to an activity
Arguments: PlResource: Resource, PlActivity: Activity
Return Type: Void
Privilege: Public

DeallocateResources - Deallocate the resources for an activity
Arguments: PlResource: Resource, PlActivity: Activity
Return Type: Void
Privilege: Public

MatchResourceRequirement - Match the resource requirements of an activity to a
resource
Arguments: PlResourceRequirements
Return Type: PlResource
Privilege: Public

4-82 305-CD-010-001

Associations:

The PlResourceManager class has associations with the following classes:
Class: PlPlan

4.4.62 PlResourceManagersUI Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This class is an abstraction for the user interface to the planning workbench application.
The class presents the functions that are available to the resource manager role.

Attributes:

EventDescriptionWindow
Data Type:
Privilege: Private
Default Value:

EventSelectionWindow
Data Type:
Privilege: Private
Default Value:

Operations:

ConfirmCreate
Arguments:
Return Type: void
Privilege: Public

ConfirmDelete
Arguments:
Return Type: void
Privilege: Public

ConfirmModify
Arguments:
Return Type: void

4-83 305-CD-010-001

Privilege: Public

CreateGroundEvent
Arguments:
Return Type: void
Privilege: Public

DeleteGroundEvent
Arguments:
Return Type: void
Privilege: Public

ModifyGroundEvent
Arguments:
Return Type: void
Privilege: Public

SelectGroundEvent
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlResourceManagersUI class has associations with the following classes:
Class: PlGroundEvent
PlPlanningWorkbenchUI (Aggregation)

4.4.63PlResourceRequirement Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
This class contains a description of the resource requirements of a PGE, which may be
matched against the resource configuration known to the Planning subsystem.

4-84 305-CD-010-001

Attributes:

myComputer - A computer within the string required by the PGE
Data Type: String
Privilege: Private
Default Value:

myDiskSpace - The disk space required for a PGE
Data Type: int
Privilege: Private
Default Value:

myNCPUs - The number of CPUs required for a PGE
Data Type: int
Privilege: Private
Default Value:

myOperatingSystem - The operating system for which a PGE is configured
Data Type: String
Privilege: Private
Default Value:

myString - The string required by the PGE
Data Type: String
Privilege: Private
Default Value:

Operations:

PlResourceRequirement - Constructor method
Arguments:
Return Type: PlResourceRequirement
Privilege: Public

~PlResourceRequirement - Destructor method
Arguments:
Return Type: void
Privilege: Public

4-85 305-CD-010-001

Associations:

The PlResourceRequirement class has associations with the following classes:
Class: PlDPR
Class: PlGroundEvent

4.4.64 PlRoutineArrival Class

Parent Class: PlDataSource
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
This class is a specialization of the PlDataSource class and describes the most frequent
method for predicting data arrivals within the ECS (at least for the TRMM data sets). This
class contains the attributes and operations required to describe routine ingest of external
data.

Attributes:

myDataBoundary - Identifies the time boundary for each Data Granule.
Data Type:
Privilege: Private
Default Value:

myDataPeriod - Identifies the data collection period within each Data Granule.
Data Type: Time
Privilege: Private
Default Value:

myDelay - The average delay between data collection and the arrival that of the Data
Granule within ECS.
Data Type: Time
Privilege: Private
Default Value:

Operations:

PredictArrivals - Predicts data instance arrivals for a given period.
Arguments: Start:Time, Stop:Time
Return Type: void

4-86 305-CD-010-001

Privilege: Public

Associations:

The PlRoutineArrival class has associations with the following classes:
None

4.4.65 PlScheduledArrival Class

Parent Class: PlDataSource
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
This class implements another method that predicts data granule arrivals based on an
external schedule from another site. This specialization is not required for the TRMM
release.

Attributes:

All Attributes inherited from parent class

Operations:

PredictArrivals
Arguments: Start:Time, Stop:Time
Return Type: void
Privilege: Public

Associations:

The PlScheduledArrival class has associations with the following classes:
None

4-87 305-CD-010-001

4.4.66 PlString Class

Parent Class: PlResource
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
A string describes the logical collection of a number of resources allocated for an
instruments processing needs

Attributes:

myComputerList - Describes the list of computers that make up the string
Data Type: List
Privilege: Private
Default Value:

Operations:

AddComputer - Add a computer to the list
Arguments: PlComputer: Comp
Return Type: void
Privilege: Public

RemoveComputer - Remove a computer from the list
Arguments: PlComputer: Comp
Return Type: void
Privilege: Public

Associations:

The PlString class has associations with the following classes:
Class: PlComputer

4.4.67 PlSubscriptionManager Class

Parent Class: PlApplication
Public: NoDistributed Object: No
Purpose and Description:
This class contains the main application methods associated with the subscription manager

4-88 305-CD-010-001

application

Attributes:

All Attributes inherited from parent class

Operations:

DeinstallReceivers - Deinstalls the receivers for each data type that is subscribed to
Arguments:
Return Type: void
Privilege: Public

Init - Initializes the application by creating the lifecycle service callbacks (shutdown etc.)
and setting up the communications for receiving subscriptions
Arguments:
Return Type: void
Privilege: Public

InstallReceivers - Installs the receivers for each data type that is subscribed to
Arguments:
Return Type: void
Privilege: Public

Shutdown - Performs a graceful shutdown of the application by deinstalling receivers and
closing communications
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlSubscriptionManager class has associations with the following classes:
Class: EcMpMsgPsngCtrl
Class: MsManager isaserver
Class: MsEvent logs
Class: PlDataTypes registersnotificationof

4-89 305-CD-010-001

4.4.68 PlSubscriptionManagerCallbacks Class

Parent Class: MsMgCallbacks
Public: NoDistributed Object: No
Purpose and Description:
Specialization class to provide the subscription manager callbacks to the MsManager in
order to be activated for the appropriate lifecycle services (shutdown, resume, suspend
notify).

Attributes:

All Attributes inherited from parent class

Operations:

NotifyCb - Notify callback not used at Release A. A null method will be provided.
Arguments:
Return Type: void
Privilege: Public

ResumeCb - Resume not supported at Release A.
Arguments:
Return Type: void
Privilege: Public

ShutdownCb - Shutdown invokes the subscription manager shutdown method,
deinstalling the receiving queues from the subscription notification queues and terminating
the program in a clean manner.
Arguments:
Return Type: void
Privilege: Public

SuspendCb - Suspend not supported at Release A
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlSubscriptionManagerCallbacks class has associations with the following classes:
None

4-90 305-CD-010-001

4.4.69 PlSubscriptionSubmitIF Class

Parent Class: PlApplication
Public: NoDistributed Object: No
Purpose and Description:
This class is an abstraction for the user interface to the subscription submission application.
The interface will be developed with a suitable GUI building tool.

Attributes:

DataTypeSelectionWindow
Data Type:
Privilege: Private
Default Value:

SubscriptionSubmissionControl
Data Type:
Privilege: Private
Default Value:

Operations:

DisplayDataTypes - This operation displays a list of the dynamic data types known to the
Planning subsystem as required input to a PGE.
Arguments:
Return Type: Void
Privilege: Public

Initialize - Initialize the subscription submission GUI.
Arguments:
Return Type: Void
Privilege: Public

SelectDataType - This operation allows the user to select a Data Type from the displayed
list.
Arguments:
Return Type: Void
Privilege: Public

4-91 305-CD-010-001

SubmitSubscription - Submit a subscription for the selected Data Type.
Arguments:
Return Type: Void
Privilege: Public

WithdrawSubscription - Withdraw the subscription for the selected Data Type.
Arguments:
Return Type: Void
Privilege: Public

Associations:

The PlSubscriptionSubmitIF class has associations with the following classes:
Class: IoAdAdvertisingSrv_C
Class: DsClSubscription creates
Class: IoAdServiceCollection_C searches
Class: IoAdServiceAdvertisement selects
Class: PlDataType updates

4.4.70 PlTimeLineDisplay Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Purpose and Description:
This class describes the user interface component that represents the graphical display of a
plan. This will be implemented by a COTS or re-use component.

Attributes:

None

Operations:

DisplayPlan - Display the specified Plan.
Arguments:
Return Type: void
Privilege: Public

4-92 305-CD-010-001

Associations:

The PlTimeLineDisplay class has associations with the following classes:
PlPlanningWorkbenchUI (Aggregation)

4.4.71 PlTimeScheduled Class

Parent Class: PlPGE
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
This specialization of the PGE accounts for the classification of PGEs whereby the PGE
scheduling is determined from some regular time period, such as an hour, a day, a week, a
month etc.

Attributes:

myAcquisitionProcessingBoundary - Identifies the time needed (for data) for extrapolation
purposes.
Data Type: Time
Privilege: Private
Default Value:

myAcquisitionProcessingPeriod - Identifies the acquisition period for the input data.
Data Type: Time
Privilege: Private
Default Value:

myNoOfTimeUnitsPerPgeRun - Number of Units of time for PGE run.
Data Type: float
Privilege: Private
Default Value:

myTimeUnits - Units of time for PGE run frequency.
Data Type: enum
Privilege: Private
Default Value:

4-93 305-CD-010-001

Operations:

GenerateDPRs - { // Iterate over the period of the production request in steps // of
myAquisitionProcessingPeriod from the nearest occurance // of the
myAcquisitionProcessingBoundary within the request period // Generate a DPR // Invoke
the select data method for the DPR }
Arguments: PlProductionRequest
Return Type: void
Privilege: Public

Associations:

The PlTimeScheduled class has associations with the following classes:
None

4.4.72 PlUser Class

Parent Class: Not Applicable
Public: NoDistributed Object: No
Persistent Class: True
Purpose and Description:
This class describes the privilidges associated with a user.

Attributes:

myProdReqPriv - Indicates whether the user has privilidges to enter / modify production
requests.
Data Type: Boolean
Privilege: Private
Default Value:

myProdSchPriv - Indicates whether the user has privilidges to create plans, and to
schedule production
Data Type: Boolean
Privilege: Private
Default Value:

myRescManPriv - Indicates whether the user has privilidges to enter resource ground
events.
Data Type: Boolean

4-94 305-CD-010-001

Privilege: Private
Default Value:

myUserName - The ECS user name for the user.
Data Type: String
Privilege: Private
Default Value:

Operations:

Authenticate - Authenticates the user in order to run the planning subsystem software.
Arguments:
Return Type: Boolean
Privilege: Public

Associations:

The PlUser class has associations with the following classes:
Class: PlApplication

4.4.73 PlUserParameters Class

Parent Class: Not Applicable
Public: YesDistributed Object: No
Persistent Class: True
Purpose and Description:
Describes any user defined parameters that are associated to a PGE.

Attributes:

myDefaultValue - The default value for the user parameter.
Data Type: String
Privilege: Private
Default Value:

myDescription - Describes the user parameter
Data Type: String
Privilege: Private
Default Value:

4-95 305-CD-010-001

myLogicalID - Id of the user parameter
Data Type: int
Privilege: Private
Default Value:

myName - Name of the user parameter
Data Type: String
Privilege: Private
Default Value:

Operations:

Create - Create an entry within the PDPS database
Arguments:
Return Type: void
Privilege: Public

Delete - Delete the entry from the PDPS database
Arguments:
Return Type: void
Privilege: Public

Modify - Modifies the default value of the user parameter
Arguments: DefValue:String
Return Type: void
Privilege: Public

PlUserParameters - Constructor method
Arguments:
Return Type: PlUserParameters
Privilege: Public

~PlUserParameters - Destructor method
Arguments:
Return Type: void
Privilege: Public

Associations:

The PlUserParameters class has associations with the following classes:
Class: PlPGE

4-96 305-CD-010-001

PlPGEProfile (Aggregation)

4.5 PLANG Dynamic Model
The PLANG Dynamic model presents a number of scenarios and event traces that describe the key
interactions of the classes participating in the various components of the Planning subsystem.

4.5.1 PGE Profile

This scenario describes various operations related to PGE profiles. PGE profiles are captured
during Algorithm Integration and Testing (AI&T). PGE profiles describe a PGE itself (e.g.,
executable, scripts), user parameters, input and output data types, PGE resource requirements, and
PGE performance statistics.

PGE information includes the periodicity of the PGE - i.e., how often the PGE can be run. Certain
PGEs can be run only when an input data type is scheduled to be acquired. Certain PGEs will be
run at regular intervals (for example, once a day, or once a month). More details are indicated in
the object model (Figure 4.3-1).

User parameter information includes default user parameters. The ECS User can override these
default values with any other values from Production Requests.

Input and output data types are described by a single data type. An output data type from a PGE
can be the input data type for another PGE. This situation is referred to as data chaining. Data types
can be static in nature (e.g., calibration data) or dynamic (e.g., L0 data, ancillary data). A non-L0
input data type needed by a PGE may be generated within the DAAC, or it may be generated at
another ECS site.

PGE resource requirements information includes identification of hardware types and any
particular hardware items associated with the PGE.

PGE performance refers to PGE performance information (e.g., CPU time). Some of this
information is gathered during Algorithm and Integration Test (AI&T), and the rest are gathered
in the operational environment when the PGE is run.

4.5.1.1 Beginning Assumptions

None

4.5.1.2 Interfaces With Other Subsystems and Segments

PGE profiles are entered/modified/deleted using the PGE Profile Editor (provided by Algorithm
Integration and Test Tools (AITTL) CSCI in Data Processing subsystem). PGE Profile Editor
utilizes PlPGEProfile class to enter and manipulate PGE profile in the system.

4.5.1.3 Stimulus

PGE profiles are entered/modified/deleted using the PGE Profile Editor (provided by AITTL CSCI
in Data Processing subsystem).

4.5.1.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

4-97 305-CD-010-001

DpPGEProfileEditor (AI&T CSCI in Data Processing subsystem)

PlPGEProfile

PlResourceRequirement

PlUserParameters

PlPGE

PlDataType

PlDataTypeRequirement

4.5.1.5 Beginning System, Segment and Subsystem State(s)

PDPS Database is in a steady state, up and running.

4.5.1.6 Ending State

PDPS Database is in steady state, up and running.

4.5.1.7 Scenario Description

Thread 1: PGE profile entry

1. A PGE profile is entered using the PGE Profile Editor. As described before, PGE profile
includes PGE itself (e.g., executables, scripts, combination of executables and scripts), user
parameters, input and output data types, and PGE resource requirements.

2. PlPGEProfile class creates corresponding PlResourceRequirements class,
PlUserParameters class, PlPge class, PlDataType classes for all input and output data types.
The PGE version number would be 1.0. The status of the PGE is set by default to Test.

Thread 2: PGE profile modification

1. The User expresses the wish to modify a PGE profile through the PGE Profile Editor.

2. DpPgeProfileEditor class in AITTL CSCI in Data Processing subsystem sends a request to
PlPGEProfile class for a list of existing PGEs and their version numbers.

3. PlPgeProfile class sends the list of existing PGEs and their version numbers along with
brief descriptions to DpPgeProfileEditor class. DpPgeProfileEditor class displays the list.

4. User selects the PGE profile and version number that needs to be modified. If the version
number is not selected, the default is the latest version. DpPgeProfileEditor class sends
PGE profile modification command along with the PGE profile and version details to
PlPgeProfile class.

5. PlPgeProfile class sends the details regarding the requested PGE profile to
DpPgeProfileEditor class, which is displayed to the user.

Sub-Thread 2-1: Value(s) associated with a PGE is modified.

6. The User modifies the desired field(s). The fields that are modified will determine if the
modification(s) are major or minor in nature. Let us assume the version number of the
existing PGE (that is being modified) is X.Y. If the modifications is major, the new version
will be numbered X+1.0. If the modifications is minor, the new version will be numbered
X.Y+1.

4-98 305-CD-010-001

An example of a minor modification is change in the default value of a user parameter. An
example of a major modification is input data type is changed, or the PGE is changed.

Sub-Thread 2-2: A PGE is promoted/demoted between Test and Operation.
6. The User changes the status of the PGE from Test to Operational.

Thread 3: PGE profile deletion
A PGE profile is deleted when the User wants it to be completely purged from the system.

1. The User expresses the wish to delete a PGE from the PGE Profile Editor.
2. DpPgeProfileEditor class in AITTL CSCI in Data Processing subsystem sends a request to

PlPGEProfile class for a list of existing PGEs and their version numbers.
3. PlPgeProfile class sends the list of existing PGEs and their version numbers along with

brief descriptions to DpPgeProfileEditor class. DpPgeProfileEditor class displays the list..
4. User selects the PGE profile version that needs to be deleted. DpPgeProfileEditor class

deletes corresponding PlResourceRequirements class, PlUserParameters class, PlPge class,
PlDataType classes for all input and output data types.

4.5.1.8 Event Trace
See Figures 4.5-1 to 4.5-3.

4.5.2 Production Requests
This scenario describes various operations related to entering production requests. The production
request is entered by the Production Scheduler. The Production Scheduler has the option of enter-
ing a particular PGE to be used during production. If no PGE is specified Planning will determine
the default PGE required. This scenario describes the process by which a production request is
translated to multiple data processing requests.
When a standard production request is entered, the input data granules needed to fulfil the request
may already be available to ECS, or they may be available in the future. Availability of input data
depends on data collection times entered in the production request with respect to when the request
is entered. The procedure by which the availability of data is determined is described in scenario
4.5.3.

4.5.2.1 Beginning Assumptions
None

4.5.2.2 Interfaces With Other Subsystems and Segments
Standard Production Requests are entered / modified / deleted by the Production Scheduler (hu-
man). These requests are handled by PlProductionRequestUI class. Necessary GUI will be devel-
oped to enter these requests.

4.5.2.3 Stimulus
Standard Production request is entered / modified / deleted by the Production Scheduler.

4.5.2.4 Participating Classes From the Object Model
The following are participating classes from the Object Model:

PlPlanningUserUI
PlProductionRequest
PlDataTypeCatalogue
PlDataType

4-99
305-C

D
-010-001

(Ops Staff) DpPGEProfileEditor PlPGEProfile

AI&T Staff

PlPGE PlResourceRequirement PlUserParameters PlDataType

The component classes are

constructed and populated

from the profile

PlPerformance

EnterPGEProfile

PlPGEProfile

PlPGE

PlResourceRequirement

PlUserParameters

PlDataType

PlPerformance

Figure 4.5-1. PGE Profile Entry Event Trace

4-100 305-CD-010-001

Figure 4.5-2. PGE Profile Modification Event Trace

(OPS Staff) DpPGEProfileEditor

PlPGEProfileAI&T Staff
PlPGEs

Reconstruct the profile information
from PDPS database

PlPGE

PlUserParameters

ModifyPGEProfile

SelectPGEs

Display List of PGEs

Selects PGE, Version No

RetrievePGEProfile

Display PGE for Modification

Modified User Parameter

ModifyPGEProfile

Next

PlPGE

Modify

UpdateVersion

4-101 305-CD-010-001

Figure 4.5-3. PGE Profile Deletion Event Trace

PlPGE

PlDPR

PlDataTypeRqt

PlInputDataType

PlDataGranule

4.5.2.5 Beginning System, Segment and Subsystem State(s)

PDPS Database is in a steady state, up and running.

(OPS Staff) DpPGEProfileEditor PlPGEProfile

AI&T Staff

PlPGEs PlPGE

Reconstructs the profile information
from the PDPS database

Deletes all other components
of the profile

DeletePGE Profile

Display list of Exsiting PGEs

SelectsPGE, Version No

SelectPGEs

Next

RetreivePGEProfile

PlPGE

Confirm Delete

DeletePGEProfile

Delete

4-102 305-CD-010-001

4.5.2.6 Ending State

PDPS Database is in steady state, up and running.

4.5.2.7 Scenario Description

Thread 1: Standard Production request entry

1. Using the Production Request Editor, the Production Scheduler will enter the command for
initiating the entry of a Standard Production request. This command is received by
PlProductionRequestUI class.

2. PlProductionRequestUI class will send a request to PlDataTypeCatalogue class for a list of
products that can be generated (product catalogue). For each product corresponding PGE
and input data types are also requested.

3. PlDataTypeCatalogue class will obtain the required information (through PDPS database
queries), and send to PlProductionRequestUI class.

4. PlProductionRequestUI class will display the product catalogue.

5. The Production Scheduler will make the desired selection of the product. At that time, the
default PGE and any default user parameters for that PGE are displayed. The Production
Scheduler enters the standard production request along with (1)specific user parameters, or
(2) any optional PGE and user parameters associated with that PGE. This request will also
have the data collection start and end periods for product generation. Typically the data
collection start and end periods refer to one of the input data types for that PGE, and this
input type is represented by the PlDataType class.

6. The entered command is checked for validity. For example, data collection start time
should be ahead of data collection end time (If not, the standard production request will be
rejected with a warning).

7. The valid command is sent to PlProductionRequest class.

8. PlProductionRequest class sends a message to PlPGE class to generate instances of
PlDataGranule class and PlDPR class.

9. PlPGE class generates PlDataGranule objects. Note: This is described in scenario 4.5.3.

10. PlPGE class has information on how the input data instances map to Data Processing
Requests. Note: PlPGE class has specialization classes - PlDataScheduled,
PlTimeScheduled, etc. which describe how often the given PGE needs to be run (refer to
Figure 5, PGE Profile Object Model for details). PGE creates many instances of PlDPR
objects based on this information.

Thread 2: Standard Production request modification

1. Using the Production Request Editor, the Production Scheduler will enter the command for
initiating a Standard Production request modification. This command is received by
PlProductionRequestUI class.

2. PlProductionRequestUI class will send a request to PlProductionRequest class to send a list
of all current Standard Production requests.

4-103 305-CD-010-001

3. PlProductionRequest class will gather the requested list (through Planning Database
queries), and send the list to PlProductionRequestUI class. PlProductionRequestUI class
will display the list to the Production Scheduler.

4. The Production Scheduler will modify the intended field on the intended production request
(which can be data collection start and end times, or PGEs).

5. The entered command is checked for validity. For example, data collection start time
should be ahead of data collection end time (If not, the standard production request
modification will be rejected with a warning).

6. The valid command is sent to PlProductionRequest class.

Note: PlProductionRequest class has the pointers to PlDataGranule and PlDPR objects
corresponding to the Production Request.

Sub-Thread 2-1: Data collection start/end time/both is/are modified

7. PlProductionRequest class compares original data collection period with modified data col-
lection period.

Any new data collection period is treated as if a new standard production request is entered
(refer to Thread 1: Standard Production request entry for this case).

Sub-Thread 2-2: PGE is modified

7. When a PGE is modified, the PlPGE object corresponding to the new PGE is determined.
With the new PGE, it is possible that some of the input data types may change.

If there is no change in any of the input data types, PlDPR objects corresponding to the
production request are modified to indicate the new PlPGE class.

If there is change in any of the input data types, PlDataGranule corresponding to the old
input data type of the old production request are deleted. New input data types are treated
as if a new standard production request is entered (refer to Thread 1: Standard Production
request entry for this case), which will result in new instances of PlDataGranule
corresponding to the new input data type of the modified production request. PlDPR
objects corresponding to the production request are modified to indicate the new PlPGE
class, and new PlDataGranule classes.

Thread 3: Standard Production request deletion

1. Using the Production Request Editor (Standard Production request deletion window), the
Production Scheduler will enter the command for initiating a Standard Production request
deletion. This command is received by PlProductionRequestUI class.

2. PlProductionRequestUI class will send a request to PlProductionRequest class to send a list
of all current Standard Production requests.

3. PlProductionRequest class will gather the requested list (through Planning Database
queries), and send the list to PlProductionRequestUI class. PlProductionRequestUI class
will display the list to the Production Scheduler.

4. The Production Scheduler will delete the intended production request.

5. The deletion command is sent to PlProductionRequest class.

4-104 305-CD-010-001

6. PlProductionRequest class deletes PlDataGranule and PlDPR objects corresponding to the
production request as long as the PlDataGranule and PlDPR objects correspond to an
another production request, in which case they are not deleted.

7. PlProductionRequest object is deleted.

4.5.2.8 Event Trace

See Figures 4.5-4 and 4.5-5.

4.5.3 Data Availability Scenario

4.5.3.1 Abstract

This scenario describes the methods by which the data available for a Production Request are
determined. Data may be already available within the Data Server (in the case of reprocessing or
processing of historic data), otherwise a prediction of the arriving data is generated. This scenario
describes a sequence of events that occur in the explosion of a Production Request into Data
Processing Requests, as described in Scenario 4.5.2

4.5.3.2 Interfaces With Other Subsystems and Segments

The Science Data Server is queried to determine the availability of data.

4.5.3.3 Stimulus

This scenario describes the procedures by which the data available for a Production Request are
determined. The overall stimulus is the receipt of a new production request. This is described in
scenario 4.5.2.

4.5.3.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlProductionRequest

• PlPGE

• PlDataType

• DsClQuery

• DsClESDTReferenceCollector

• DsClESDTReference

• PlDataSource

4.5.3.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running.

4.5.3.6 Ending State

No change in PDPS database server state.

4-105
305-C

D
-010-001

PlProductionRequestUI
PlDataTypeCatalogue PlProductionRequest

PlPge(OPS Staff)

PlDPR

Production Scheduler

CatalogueRequest

Display Catalogue

Selects product

RetrieveDefPGE

DefaultPGEName

Dis[play default PGE name,

User parameters

AddProductionRequest

PlProductionRequest

GenerateDPRs

Next

FindDataAvailability

PlDPR

Figure 4.5-4. Production Request Entry Event Trace

4-106
305-C

D
-010-001

Production Scheduler PlProductionRequestUI PlProductionrequest

Enters prod reqmodification window

ProductionRequest

Display list of prod requests

ModifyProductionRequest

Modify

RetrieveAllProdReq

DeleteProductionRequest

Delete

Figure 4.5-5. Production Request Deletion Event Trace

4-107 305-CD-010-001

4.5.3.7 Scenario Description

1. The PlProductionRequest class invokes the FindDataAvailability method of the PGE in
order to determine the availability of the data required for that production request, using the
start and stop time of the Production Request

2. The PGE iterates through each of the input data types for that PGE, and invokes the
FindDataAvailability for that data type.

3. Within the FindDataAvailability method it is determined whether any of the period of
interest is in the past, if so the Data Server which provides for the archive of that Data Type
is searched for existence of the Data.

4. A query is constructed using the DsClQuery class, which is then applied against the Data
Server (as defined within the DsClESDTReferenceCollector class).

5. The results set returned from the query is iterated through, extracting the required metadata
that describes the instance, creating an instance of the PlDataGranule for each item,
ensuring that instance is not a duplicate already within the table.

6. If the stop time of the last returned granule is less than the stop time of the production
request then the software predicts the data arrivals using the PlDataSource class.

4.5.3.8 Event Trace

See Figure 4.5-6.

4.5.4 Subscription Submission Scenario

4.5.4.1 Abstract

This scenario describes the submitting a subscription to a Data Server from the Subscription
submission utility.

4.5.4.2 Interfaces With Other Subsystems and Segments

The Interoperability subsystem provides advertisements to the Planning subsystem. The
subscription is submitted to the Data Server subsystem. The MSS provides user information
required to set up a subscription.

4.5.4.3 Stimulus

The production scheduler initiates the Subscription Submission Interface in order to submit a
subscription.

4.5.4.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlSubscriptionSubmitIF

• PlDataTypes

• PlDataType

• IoAdAdvertisingSrv_C

4-108
305-C

D
-010-001

PlProductionRequest PlPGE
PlDataType

PlDataGranule DsClQuery DsClESDTReferenceCollector DsClESDTReference PlDataSource

FindDataAvailability

FindDataAvailability

DsClQuery

DsClESDTReferenceCollector

Inspect

Create

PredictArrivals

Create

Search

Figure 4.5-6. Data Availability Event Trace

4-109 305-CD-010-001

• IoAdService Collection

• IoAdServiceAdvertisement

4.5.4.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running.

4.5.4.6 Ending State

No change in PDPS database server state. The subscription is submitted.

4.5.4.7 Scenario Description

1. The user starts the subscription submission utility, the standard user authentication process
applies (see scenario 4.5.17). The user selects to set up a subscription and is offered a
display of those Data Types which may be subscribed to.

2. The user selects the Data Type for which to set up a subscription.

3. The subscription submission utility selects the advertisement corresponding for the
selected Data Type, using the Data Server UR and product name attributes of the Data Type
class.

4. The user confirms the submission of the subscription.

5. The utility builds the Data Server subscription from the advertisement, submits the
subscription and, on a successful status from the Data Server updates the Data Type object
within the PDPS database.

4.5.4.8 Event Trace

See Figure 4.5-7.

4.5.5 Subscription Withdrawal Scenario

4.5.5.1 Abstract

This scenario describes withdrawing a subscription to a Data Server from the Subscription
submission interface.

4.5.5.2 Interfaces With Other Subsystems and Segments

The Interoperability subsystem provides advertisements to the Planning subsystem. The
subscription is submitted to the Data Server subsystem. The MSS provides user information
required to set up a subscription.

4.5.5.3 Stimulus

The production scheduler initiates the Subscription Submission Interface in order to withdraw a
subscription.

4-110
305-C

D
-010-001

(Ops staff)

Production Scheduler
PlSubscriptionSubmitIF PlDataTypes

PlDataType
IoAdServiceCollection_C IoAdServiceAdvertisement_C

DsClSubscription
IoAdAdvertisingSrv_C

DisplayDataTypes

SelectUnsubscribedTypes

SelectDataType

Search

IoAdServiceAdvertisement_C

SubmitSubscription

DsClSubscription

SetSubscriiptionQueue

Submit

IoAdAdvertisingSrv_C

getFirstServiceAd

Figure 4.5-7. Subscription Submission Event Trace

4-111 305-CD-010-001

4.5.5.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlSubscriptionSubmitIF

• PlDataTypes

• PlDataType

• IoAdAdvertisingSrv_C

• IoAdServiceCollection_C

• IoAdServiceAdvertisement

4.5.5.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running.

4.5.5.6 Ending State

No change in PDPS database server state. The subscription is withdrawn.

4.5.5.7 Scenario Description

1. The user starts the subscription submission utility, the standard user authentication process
applies (see scenario 4.5.17). The user selects to withdraw a subscription and is offered a
display of those Data Types which are subscribed to.

2. The user selects the Data Type for which to withdraw up a subscription.

3. The subscription submission utility selects the advertisement corresponding for the
selected Data Type, using the Data Server UR and product name attributes of the Data Type
class.

4. The user confirms the withdrawal of the subscription.

5. The utility builds the Data Server subscription from the advertisement, withdraws the
subscription and, on a successful status from the Data Server updates the Data Type object
within the PDPS database.

4.5.5.8 Event Trace

See Figure 4.5-8.

4.5.6 Ground Event Scenario

4.5.6.1 Abstract

This scenario describes the system response to a resource manager adding / modifying / deleting a
ground event within the PDPS database. Ground events describe the allocation of a resource to a
non-production task such as maintenance. In the majority of cases, these ground events will be
defined well in advance of the production planning, and so a replanning of the production schedule
is not part of this standard scenario. If the ground event is entered within a time period that is part
of the activated schedule then, in order to have that event figure within the schedule, a replan will

4-112
305-C

D
-010-001

(Ops staff)

Production Scheduler
PlSubscriptionSubmitIF PlDataTypes

PlDataType IoAdServiceCollection_C IoAdServiceAdvertisement_C
DsClSubscription

IoAdAvertisingSrv_C

DisplayDataTypes

SelectSubscribedTypes

PlDataType

SelectDataType

IoAdAdvertisingSrv_C

IoAdServiceAdvertisement_C

WithdrawSubscription

DsClSubscription

SetSubscriiptionQueue

Withdraw

Search

getFirstServiceAd

Figure 4.5-8. Subscription Withdrawal Event Trace

4-113 305-CD-010-001

be required the resource manager (operations staff role) is required to communicate the need for a
replan with the production scheduler (operations staff role) in order for that event to be scheduled.

Note: The description of a ground event allows a window of opportunity to be defined together
with a duration. (So that the production can have some flexibility as to when to plan an event to
achieve efficient resource usage). The actual time of the event will only be determined when the
plan is generated, unless the duration is the same length of time as the window of opportunity.

4.5.6.2 Interfaces With Other Subsystems and Segments

None.

4.5.6.3 Stimulus

The resource manager initiates the Production Planning Workbench in order to enter a ground
event.

4.4.6.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningWorkbenchUI

• PlResourceManagersUI

• PlGroundEvents

• PlGroundEvent

4.5.6.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running.

4.5.6.6 Ending State

No change in PDPS database server state.

4.5.6.7 Scenario Description

1. The user starts the planning workbench utility, the standard user authentication process
applies (see scenario 4.5.17).

Thread 1: Addition of a ground event

2. The user is presented with a function to add a new event, this initiates a forms type window
(Event Description Window) in which that ground event can be described, the user
populates the fields within the form, for event description, window of opportunity,
duration, resource requirements etc.

3. The user confirms the description is complete and the Ground Event is created and recorded
within the PDPS database. (Simple validation of the Ground Event will be performed to
ensure the start date is before the end date etc.).

4. The timeline display of resources will be updated to show the allocation.

Thread 2: Modification of a ground event.

4-114 305-CD-010-001

5. The user is presented with a function to modify an event described within the PDPS
database, this initiates a window (Event Selection Window) which provides a list of the
current defined events. The facility to reduce the list by limiting the search to a given time
range is provided.

6. The user selects a ground event from the list, which then populates the fields in the Event
Description Window.

7. The user modifies the description and confirms the modification of the Ground Event.

8. The timeline display of resources will be updated to show the allocation.

Thread 3: Deletion of a ground event.

9. The user is presented with a function to delete an event described within the PDPS
database, this initiates a window (Event Selection Window) which provides a list of the
current defined events. The facility to reduce the list by limiting the search to a given time
range is provided.

10. The user selects a ground event from the list, which then populates the fields in the Event
Description Window.

11. The user confirms the deletion of the Ground Event.

12. The timeline display of resources will be updated to show the allocation.

4.5.6.8 Event Trace

See Figure 4.5-9.

4.5.7 Plan Creation Scenario

4.5.7.1 Abstract

This scenario describes the creation of a plan within the Production Planning Workbench.

This scenario presents an abstract representation of the activities that occur within the Production
Planning Object Library. The full detail of generating a plan is very complex, and intimately tied
to the Production Planning Object Library. This scenario is presented to describe the process at a
reasonable level of detail. For fuller description please refer to the Production Planning Object
Library CSC section (section 4.6.5).

4.5.7.2 Interfaces With Other Subsystems and Segments

None.

4.5.7.3 Stimulus

The production scheduler initiates the Production Planning Workbench in order to generate a new
plan.

4-115 305-CD-010-001

Figure 4.5-9. Ground Event Entry Event Trace

PlResourceManagersUI PlGroundEvent PlGroundEvents
(OPS Staff)

CreateGroundEvent

Create Validate

Save

ModifyGroundEvent

PlGroundEvents

SelectGroundEvent

Next

Modify

Validate

Save

DeleteGroundEvent

PlGroundEvents

Next

SelectGroundEvent

ConfirmCreate

ConfirmModify

ConfirmDelete

Delete

4-116 305-CD-010-001

4.5.7.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningWorkbenchUI

• PlPlan

• PlGroundEvents

• PlGroundEvent

• PlGroundActivity

• PlDPRs

• PlDPR

• PlPGEActivity

• PlResourceManager

4.5.7.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running.

4.5.7.6 Ending State

No change to system state.

4.5.7.7 Scenario Description

1. The user starts the planning workbench utility, the standard user authentication process
applies (see scenario 4.5.17). The user specifies the time period for which to generate a plan
within the GUI and initiates the creation of a plan object.

2. The plan object determines which ground events are defined within the duration of the
planning time-period, by creating an instance of the PlGroundEvents collection object.

3. The plan object iterates through the ordered list of ground events, creating an activity to
fulfil each event

4. The activity is allocated to the appropriate resources by the resource manager, thus setting
out a timeline of when the resources are unavailable for production.

5. The user then specifies the Production Requests which are to be included in the plan.

6. The Data Processing Requests which are associated to the Processing Request, and within
the time period of the plan are determined from the PDPS database using the PlDPRs
collection class.

7. The plan object iterates through the ordered list of Data Processing Requests, creating an
activity to signify the run of the PGE.

8. The activity is allocated to the appropriate resources by the resource manager.

9. The schedule for the PGE executions is redetermined by the plan object, defining the
predicted start and predicted stop times of all the activities.

4-117 305-CD-010-001

4.5.7.8 Event Trace

See Figure 19.

4.5.8 Deleting a Plan Scenario

4.5.8.1 Abstract

This scenario describes the deletion plan from the Production Planning Workbench. This function
does not delete the associated DPRs or Ground Events from the PDPS database, since they may be
associated to other plans, and are also maintained for a set period such that reports may be
generated against their completion status.

4.5.8.2 Interfaces With Other Subsystems and Segments

None.

4.5.8.3 Stimulus

It's assumed that the Production Planning Workbench application is running. The user decides to
delete the production schedule from the workbench.

4.5.8.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningWorkbenchUI

• PlPlan

• PlPGEActivities

• PlPGEActivity

4.5.8.5 Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. The Production Workbench application is running and that
a plan has been selected.

4.5.8.6 Ending State

No change in PDPS database server state. The plan is deleted.

4.5.8.7 Scenario Description

1. The operator initiates the command to delete the displayed plan.

2. The plan object creates an ordered list of the activities within the plan.

3. The plan object iterates through the activities and invokes the delete method from the
activity [note that the delete method means that the activity is removed from the PDPS
database, as opposed to the destructor operation for the class, which deallocates the
memory associated to the object within the application, the destructor is called after the
delete].

4. The entry describing the plan itself in the database is deleted.

4-118
305-C

D
-010-001

PlPlanningWorkbenchUI
PlPlan PlGroundEvents

PlGroundActivity
PlDPRs PlPGEActivity PlResourceManager

PlPlan

SelectEvents

Next

PlGroundEventActivity

SelectDPRs

PlAllocateResource

AllocateResource

Next

PlanSchedule

PlanProductionRequest

PlanSchedule

PlPGEActivity

Figure 4.5-10. Plan Creation Scenario

4-119 305-CD-010-001

4.5.8.8 Event Trace

None.

4.5.9 Publishing a Plan Scenario

4.5.9.1 Abstract

This scenario describes the system response to a production planner publishing a plan which is
maintained within the PDPS database. After being selected, the plan would be formatted by the
system into a published plan consisting of three different types of file, which are Metadata file,
ASCII report file, and Binary report file. The published plan then would be insert into
Documentation Data Server. The method to insert a published plan into Document Data Server is
an operation encapsulated in the PlPublishedPlan Class.

4.5.9.2 Interfaces With Other Subsystems and Segments

Document Data Server provides storage for published plans. The interface to the Document Data
Server is shown by the DsDoProductionPlan object, which is Document Data Server abstraction
for the plans.

4.5.9.3 Stimulus

A production planner initiates PublishPlan Function from the Production Planning Workbench.

4.5.9.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningWorkbenchUI

• PlPlan

• PlPublishedPlan

• PlPlanMetadataFile

• PlPlanASCIIReportFile

• PlPlanBinaryReportFile

4.5.9.5 Beginning System, Segment and Subsystem State(s)

Steady state, up and running.

4.5.9.6 Ending State

No change in the state of the system.

4.5.9.7 Scenario Description

1. The production planner starts the planning workbench utility, the standard user
authentication process applies (see scenario 4.5.17).

 2. The production planner is presented with a function to publish a plan, and initiates the
function.

4-120 305-CD-010-001

3. Published Plan object is created.

4. The published plan is inserted into Documentation Data Server.

5. Planning System will send a notification by mail to a pre-prepared list of address when a
new plan is published.

4.5.9.8 Event Trace

See Figure 4.5-11.

4.5.10 Building the Resource Configuration Scenario

4.5.10.1Abstract

This scenario describes the initialization of the Resource Configuration from MSS

4.5.10.2Interfaces With Other Subsystems and Segments

The MSS provides resource configuration information to the subsystems.

4.5.10.3Stimulus

The resource configuration is built, or updated as a manual initiated operation from the Planning
Workbench.

4.5.10.4Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningWorkbenchUI

PlResourceConfiguration

• PlResource

• PlString

• PlComputer

• PlDiskPartition

• MsDAAC

4.5.10.5Beginning System, Segment and Subsystem State(s)

Steady state, up and running.

4.5.10.6Ending State

No change in the state of the system.

4.5.10.7Scenario Description

1. The production planner starts the planning workbench utility, the standard user
authentication process applies (see scenario 4.5.17).

2. The production planner is presented with a function to build the resource configuration, and
initiates this function.

4-121
305-C

D
-010-001

(Ops Staff)

PlPlanning

WorkbenchUI

Production Planner

PlPlan

PlPublishedPlan

PlPlan

MetadataFilePlan

PlPlanASCII

ReportFile

PlPlanBinary

ReportFile
PlPublishScriptDsCtCommand DsCtRequest DsCtClient

Publish Plan

PlPublishedPlan

PlPlanMetadataFile

PlPlanBinaryReportFile

PlPlanASCIIReportFile

InsertInDDS

Excute

Publish

DsCtCommand

DsCtRequest

SubmitRequest

Figure 4.5-11. Plan Publication Event Trace

4-122 305-CD-010-001

3. MsDAAC object is created, and a filter applied to specify the need for information on
production resources only.

4. The iteration services of the MsDAAC class are used to extract the production resource and
create the objects for these within the PDPS database.

4.5.10.8Event Trace

See Figure 4.5-12.

4.5.11 Plan Activation Scenario

4.5.11.1Abstract

This scenario describes the activation of a plan from the Production Planning Workbench.

This scenario presents an abstract representation of the activities that occur within the Production
Planning Object Library. The full detail of generating a plan is very complex, and intimately tied
to the Production Planning Object Library. This scenario is presented to describe the process at a
reasonable level of detail. For fuller description of the “planning/scheduling” aspects of this
scenario please refer to the Production Planning Object Library CSC section (section 4.6.5).

4.5.11.2Interfaces With Other Subsystems and Segments

None.

4.5.11.3Stimulus

The production scheduler initiates the Production Planning Workbench in order to activate a plan.

4.5.11.4Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningWorkbenchUI

• PlPlan

• PlGroundActivies

• PlGroundEvent

• PlPGEActivities

• PlDPR

• PlActivities

• DPJobScheduler

4.5.11.5Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. No previous plan is active (there are no scheduled jobs in
the data processing subsystem's job scheduler COTS).

4.5.11.6Ending State

No PDPS database server state. A plan is activated (a portion of the active plan has been rolled into
the data processing subsystem's job scheduler COTS).

4-123 305-CD-010-001

Figure 4.5-12. Resource Configuration Event Trace.

4.5.11.7Scenario Description

1. The user starts the planning workbench utility, the standard user authentication process
applies (see scenario 4.5.17). The user selects a plan which is to be used to drive the
production schedule.

2. On recreation from the PDPS database the plan is automatically updated to reflect changes
that have occurred since the plan was generated.

3. The plan object determines whether any new ground events have been defined, or old
ground events have been deleted since the plan was generated or last updated. The
Activities describing the ground events within a plan are updated accordingly and the plan
is updated.

PlResourceManagersUI PlResourceConfiguration MsDAACResourceManager
(OPS Staff) PlResource

BuildConfiguration

BuildConfiguration

ApplyFilter

FirstResource

PlResource

NextResource

PlResource

4-124 305-CD-010-001

4. The plan object determines whether any of the data processing requests within the plan
have been completed and updates the plan accordingly. The user may modify the plan at
this point by redefining priorities in order to achieve a revised schedule, this thread is not
described here.

5. The user initiates activation of the plan. The plan object will create an ordered list of the
activities which are within the scheduling window. This window defines the portion of the
plan that needs to be rolled into the COTS. By default this window is 24 hours from the
current time, however it is modifiable within from the workbench utility.

6. The plan object iterates through the activities defined in the order indicated by the plan, and
calls the appropriate scheduling operation for that activity.

7. The Data Processing Request activities will initiate a call to create a PGE job within the
data processing subsystem's job scheduling COTS.

8. The Ground Events will initiate a call to create a Ground Event Job within the data
processing subsystem's job scheduling COTS.

Note: For details of how the jobs are created within the COTS and subsequently managed from
the COTS please refer to scenarios within the Data Processing Design documentation.

4.5.11.8Event Trace

See Figure 4.5-13.

4.5.12 Cancelling a Plan Scenario

4.5.12.1Abstract

This scenario describes the cancelling of an active plan from the Production Planning Workbench.
The scenario illustrates the interface to the Data Processing subsystem through the
DPJobScheduler interface class.

4.5.12.2Interfaces With Other Subsystems and Segments

The Planning subsystem interfaces with the Data Processing subsystem in order to cancel the
scheduled Data Processing Requests.

4.5.12.3Stimulus

It's assumed that the Production Planning Workbench application is running and displaying the
active plan. The user decides to cancel the production schedule from the workbench.

4.5.12.4Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningWorkbenchUI

• PlActivePlan

• PlPGEActivities

• PlPGEActivity

• PlGroundEvent

4-125
305-C

D
-010-001

PlProductionPlannersUI
PlActivePlan PlActivities PlGroundEvent PlDPR DPJobScheduler

(OPS Staff)

Production Scheduler

PlActivity

PlActivePlan

ActivateSchedule

PlActivities

Schedule

CreateDPRJob

Schedule

CreateGroundEvent

SelectPlan

ActivateSchedule

Next

Schedule

UpdatePlan

Figure 4.5-13. Plan Activation Event Trace

4-126 305-CD-010-001

• PlDPR

• DPJobScheduler

4.5.12.5Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. A portion of a plan has been activated (there are scheduled
jobs in the data processing subsystem's job scheduler COTS).

4.5.12.6Ending State

No change in PDPS database server state. The scheduled activities are cancelled.

4.5.12.7Scenario Description

4. The operator initiates the command to cancel the production schedule.

5. The plan object creates an ordered list of the activities which are part of the active schedule
(determined from the status attribute).

3. The plan object iterates through the activities and invokes the cancel method from the
activity.

6. The PlDPR and PlGroundEvent classes interface with the DPJobScheduler class to cancel
the activity.

7. The plan is updated.

4.5.12.8Event Trace

See Figure 4.5-14.

4.5.13 Statusing a Plan Scenario

4.5.13.1Abstract

This scenario describes the statusing of a plan from the Production Planning Workbench. A
component of the Job Scheduling COTS, AutoXpert now provides the dynamic display of the
production schedule, therefore there are no requirements for dynamic updating to the plans.
However there are occasions when the Plan from which the schedule originated would require
updating, or statusing. Primarily the need for updating this will be before “downloading” a day's
schedule into the COTS, taking into account the previous days production.

This scenario presents an abstract representation of the activities that occur within the Production
Planning Object Library. The full detail of generating a plan is very complex, and intimately tied
to the Production Planning Object Library. This scenario is presented to describe the process at a
reasonable level of detail. For fuller description of the “planning/scheduling” aspects of this
scenario please refer to the Production Planning Object Library CSC section (section 4.6.5).

4.5.13.2Interfaces With Other Subsystems and Segments

None.

4.5.13.3Stimulus

The production scheduler initiates the Production Planning Workbench in order to activate a plan.

4-127
305-C

D
-010-001

PlProductionPlannersUI
PlActivePlan

PlActivities PlGroundEvent
PlDPR

DPJobScheduler

(OPS Staff)

Production Scheduler

PlActivity

CancelSchedule

PlActivities

Cancel

CancelDPRJob

Cancel

CancelPGEJob

CancelSchedule

Next

Cancel

Figure 4.5-14. Plan Cancellation Event Trace

4-128 305-CD-010-001

4.5.13.4Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlPlanningWorkbenchUI

• PlPlan

• PlGroundActivies

• PlGroundEvent

• PlPGEActivities

• PlDPR

• PlActivities

• DPJobScheduler

4.5.13.5Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. A portion of a plan has been activated (there are scheduled
jobs in the data processing subsystem's job scheduler COTS).

4.5.13.6Ending State

No PDPS database server state. The plan is updated.

4.5.13.7Scenario Description

1. The user starts the planning workbench utility, the standard user authentication process
applies (see scenario 4.5.17). The user selects the active plan which is to be updated.

2. On recreation from the PDPS database the plan is automatically updated to reflect changes
that have occurred since the plan was generated.

3. The plan object determines whether any new ground events have been defined, or old
ground events have been deleted since the plan was generated or last updated. The
Activities describing the ground events within a plan are updated accordingly and the plan
is updated.

4. The plan object determines whether any of the data processing requests within the plan
have been completed and updates the plan accordingly.

5. The plan object creates an ordered list of the activities which are part of the active schedule
(determined from the status attribute). For those activities which have not completed the
plan object invokes the status method.

6. The PlDPR and object interfaces with the DPJobScheduler class to return the status of the
activity.

7. The plan is updated.

4.5.13.8Event Trace

See Figure 4.5-15.

4-129
305-C

D
-010-001

PlProductionPlannersUI PlActivePlan PlActivities

PlGroundEvent PlDPR DPJobScheduler
(OPS Staff)

Production Scheduler
PlActivity

PlActivePlan

StatusSchedule

PlActivities

statusPGEJob

Status

SelectPlan

StatusSchedule

Status

Next

UpdatePlan

Figure 4.5-15. Plan Statusing Event Trace

4-130 305-CD-010-001

4.5.14 Subscription Manager Startup Scenario

4.5.14.1Abstract

This scenario describes the startup procedure for the Subscription Manager application. This
scenario describes the activities within the Subscription Manager once the application is started,
not the MSS activities which initiate the program. For a description of how ECS servers are started
see Release A CSMS Management Subsystem Design Specification

4.5.14.2Interfaces With Other Subsystems and Segments

MSS communicates lifecycle commands (startup, shutdown etc.) to ECS applications.

4.5.14.3Stimulus

The ECS Operator starts the Subscription Manager from the Management User Interface.

4.5.14.4Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlSubscriptionManager

• MsManager

• PlSubscriptionManagerCallbacks

• CSS Notification

• PlDataTypes

• PlDataType

4.5.14.5Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. The subscription manager application is not running.

4.5.14.6 Ending State

No change in PDPS database server state. The subscription manager is started and waiting
notification of data arrival from the Data Server.

4.5.14.7Scenario Description

1. The Operator starts the subscription manager server.

2. The subscription manager declares itself as an ECS server application to the MSS
subsystem and installs callbacks for shutdown and notification messages.

3. The subscription manager uses the PDPS database to determine those datatypes which have
subscriptions declared with a Data Server, using the PlDataTypes class.

4. The subscription manager iterates through the subscribed data types and installs callbacks
to be called whenever there is a subscription delivered from the Data Server.

Note: the guaranteed asynchronous nature of the subscription notification will mean that the
application will be made aware of any subscriptions that have been delivered in the interval

4-131 305-CD-010-001

between it's last shutdown and the present startup. Scenario 4.5.15 describes the standard
procedure performed each time a subscription notification arrives.

4.5.14.8Event Trace

See Figure 4.5-16

4.5.15 Subscription Notification Scenario

4.5.15.1Abstract

This scenario describes the procedure by which the subscription manager is informed of data
arrival and performs the appropriate actions to determine whether or not to release one of the PGE
jobs defined within the Data Processing subsystem

4.5.15.2Interfaces With Other Subsystems and Segments

The Data Server subsystem initiates the subscription notification. The Planning subsystem releases
PGE jobs within the Data Processing Subsystem

4.5.15.3Stimulus

A notification of data arrival is sent from the Data Server subsystem.

4.5.15.4Participating Classes From the Object Model

The following are participating classes from the Object Model:

• CSSNotification

• PlDataTypes

• PlDataGranules

• PlDataGranule

• GlUR

• DsClESDTReference

4.5.15.5Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. The subscription manager application is running.

4.5.15.6Ending State

No change in PDPS database server, subscription manager state.

4.5.15.7Scenario Description

1. The RegisterDataArrival callback is called, and the UR is created from the notification
message.

2. The InspectDataArrival method is invoked to determine extract the metadata associated to
the UR presented in the data arrival notification

4-132
305-C

D
-010-001

PlSubscriptionManager
PlSubscriptionManagerCallbacks

MsManager

PlDataTypes
DataTypeEcMpMsgPsngCtrl

EcMpMsgQeueuIn

PlSubscriptionManagerCallbacks

MsManager

SetMsMsgCallBackObj

SelectSubscribedTypes

Next

EcMpMsgPsngCtrl

InstallRecevier

CreateReceiver

EcMpMsgQueueIn

GetMsgWait

Figure 4.5-16. Subscription Manager Startup Event Trace.

4-133 305-CD-010-001

3. The subscription manager determines the DPRs for which this data was required by
selecting those predicted data instances which match the arrived data metadata.

4. The subscription manager iterates through the DPRs to determine whether all the data
dependencies for the DPR have been fulfilled.

5. If the data dependencies have been fulfilled then the job associated with the DPR is released
within the Data Processing subsystem

4.5.15.8Event Trace

See Figure 4.5-17.

4.5.15.9State Transition Diagrams

None.

4.5.16 Subscription Manager Shutdown Scenario

4.5.16.1Abstract

This scenario describes the shutdown procedure for the Subscription Manager application. This
scenario describes the activities within the Subscription Manager once shutdown notification is
received, not the MSS activities which initiate the shutdown procedure. For a description of how
shutdown of ECS servers is managed within MSS see the MSS Design Specification.

4.5.16.2Interfaces With Other Subsystems and Segments

MSS communicates lifecycle commands (startup, shutdown etc.) to ECS applications.

4.5.16.3Stimulus

The ECS Operator starts the Subscription Manager from the Management User Interface.

4.5.16.4Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlSubscriptionManager

• MsManager

• PlSubscriptionManagerCallbacks

• CSSNotification

• PlDataTypes

4.5.16.5Beginning System, Segment and Subsystem State(s)

The PDPS database server is running. The subscription manager application is running.

4.5.16.6Ending State

No change in PDPS database server state. The subscription manager is shutdown.

4-134
305-C

D
-010-001

PlDataType EcMpMsgQueuin() GlUR
DsClESDTReference

PlDataIGranules
PlDataGranule

PlDPR
DpJobScheduler

GetMessageWait_Rtn()

GlUR

DsClESDTReference

Inspect

MatchInstances

FindAssociatedDPRs

CheckAvailable

CheckAvailability

RegisterAvailability

ReleaseDPRJob

Figure 4.5-17. Subscription Notification Event Trace

4-135 305-CD-010-001

4.5.16.7Scenario Description

1. The PlSubscriptionManager callback is called by the MsManager class.

2. The PlSubscriptionManager shutdown procedure is called.

3. The subscription manager finishes actions with the outstanding notifications.

4. The subscription manager iterates through the subscribed data types and deinstalls
callbacks.

Note: the guaranteed asynchronous nature of the subscription notification will mean that the
application will be made aware of any subscriptions that are been delivered in the interval
between it's shutdown and next startup. Scenario 4.5.15 describes the standard procedure
performed each time a subscription notification arrives.

4.5.16.8Event Trace

See Figure 4.5-18.

4.5.17 User Logon and Authentication

4.5.17.1Abstract

This scenario describes user logon and authentication to access the Planning operational software.
There are three classes of users, the production scheduler, resource manager, and the ECS user.
The production scheduler and resource manager are operational staff primarily responsible for
scheduling planning activities and managing resources respectively. The ECS user is primarily
responsible for entering production requests.

The Planning software only permits users to access certain functional areas within the Planning
software system. To this end, certain restrictions are place on different types of users. For
instance, an ECS user cannot create a candidate plan whereas a production scheduler is allowed to
create a candidate plan. These access rights are enforced through the Planning software and
database. Users invoke the Planning software system, the account name is validated, and if
authorized perform the day to day functions utilizing the operational system.

User accounts and associated privileges will be maintained in the Planning database by local
DAAC administrative personnel. The Planning subsystem will provide a GUI interface to
maintain the user accounts and privileges.

Note: Planning assumes that once a user has access to the ECS environment, i.e., has been
authenticated by ECS, no password is necessary to access the Planning Software.

4.5.17.2 Interfaces with other Subsystems and Segments

None

4.5.17.3 Stimulus

The user logs into the Planning software and initiates the Planning software.

4-136
305-C

D
-010-001

PlSubscriptionManager
PlSubscriptionManagerCallbacks

MsManager

PlDataTypes DataType
EcMpMsgPsngCtrl EcMpMsgQeueuIn

SelectSubscribedTypes

Next

DeinstallReceiver

Shutdown

Shutdown

~EcMsgQueuein

~EcMpMsgPsngCtrl

Figure 4.5-18. Subscription Manager Shutdown Event Trace

4-137 305-CD-010-001

4.5.17.4 Participating Classes From the Object Model

The following are participating classes from the Object Model:

• PlApplication,

• PlPlResourceManagersUI,

• PlPlanningWorkbenchUI,

• PlProductionRequestUI, and

• PlUser.

4.5.17.5Beginning System, Segment and Subsystem State(s)

The PDPS database server is running.

4.5.17.6Ending State

No change to the database server state.

4.5.17.7Scenario Description

1. The user logs into UNIX supplying an account name and password.

2. The user invokes the Planning software to gain access to its operational environment.

3. Upon initiation of the Planning software, the user's account name is captured.

4. Once the user account name is captured, the Planning software makes a connection to the
database server to verify the account name.

Thread 1: Invalid User

5. If there is no match in the database for the corresponding account name, access will not be
permitted to the Planning operational environment.

6. The Planning software notifies the user that he is not authorized to use Planning and all
Planning services are denied.

Thread 2: Valid User

7. If the user is a valid user, the Planning software queries the database to obtain the
appropriate privileges associated with the user.

8. The software assesses the privileges retrieved from the database and restricts the user to the
access only the services within the system that are applicable to the user's class type.

9. Upon successful authentication the user proceeds to use the Planning software based on the
user privileges retrieved from the database .

4.6 CSCI Structure
The CSCI is decomposed into a number of CSCs. The CSCs correspond either to an application,
or a class category describing a logically related set of functionality. The table below briefly out-
lines the CSC breakout of the PLANG CSCI.

4-138 305-CD-010-001

4.6.1 Planning Subscription Editor CSC

4.6.1.1 Purpose and Description

This application provides the capabilities required to submit subscriptions to the Data Servers
responsible for the storage of ingested data. Registration of a subscription at a Data Server is
required for the Planning CSCI to receive notification when data arrive within the ECS. At this
Release the submission of subscriptions will be managed as an operator initiated activity, although
this may be automated at a later date.

4.6.1.2 Mapping to objects implemented by this component

As described in section 4.3.3.

4.6.1.3 Candidate products

None. This is a custom component required to interface with ECS specific services.

4.6.2 Production Request Editor CSC

4.6.2.1 Purpose and Description

This application allows the user to submit production requests that describe the data products to be
produced. The application uses the PGE descriptions (profiles) entered during AI&T in order to
work out the tasks - Data Processing Requests - that, in sum, meet the request. The application
provides the capabilities to add, modify and delete Production Requests, as well as review and
modify the resulting Data Processing Requests. The production request editor is identified as a
distinct application and separate from the workbench in anticipation that defining production
requests will be a discrete activity, unrelated to the “planning” of these events.

The Production request editor may also be used by authorized operations staff to schedule Data
Processing Requests derived from a production request directly to the Data Processing subsystem.

Table 4.5-1. Production Planning CSCs
CSC Description Type

Subscription
Editor

Interfaces to Data Server for submission of
Subscriptions required so that Planning subsystem is
notified of arriving data.

DEV

Production Request
Editor

Accepts Production Requests which describe an order
for Data production, translates to Data Processing
Requests which specify the PGEs which have to be
run to service the Production Request.

DEV

Subscription
Manager

Interfaces to Data Server for notification of data
availability, releases Data Processing Requests
queued in Data Processing subsystem.

DEV

Planning Workbench Provides the ability to create, modify, and activate a
plan for the scheduling of Data Processing Requests.

DEV

Planning Object
Library

A set of C++ class libraries that provides a framework
for the Planning Workbench.

OTS DELPHI
(Hughes class
libraries)

PDPS DBMS DBMS Provides persistent storage for Planning data
(e.g. PGE Profiles, Production Requests, Data
Processing Requests, Plans etc.)

 OTS Sybase

4-139 305-CD-010-001

4.6.2.2 Mapping to objects implemented by this component

As described in section 4.3.2.

4.6.2.3 Candidate products

None. Again is a custom component required to manage ECS specific entities such as the PGE.

4.6.3 Subscription Manager CSC

4.6.3.1 Purpose and Description

The Subscription Manager is used to manage the receipt of a subscription notification from the
Data Server. Subscription notification is used to notify Planning on the arrival of input data re-
quired by a given PGE. The Subscription Notification contains Universal References (URs) which
are pointers to the data objects stored in the Data Server. The Subscription Manager updates the
PDPS database to indicate when data become available. When all input data for a Data Processing
Request is available, the job defined for that Data Processing Request is released within the Data
Processing subsystem.

4.6.3.2 Mapping to objects implemented by this component

As described in section 4.3.7.

4.6.3.3 Candidate products

This is a custom component required to interface with ECS specific services.

4.6.4 Production Planning Workbench CSC

4.6.4.1 Purpose and Description

The application is used to prepare a schedule for the production at a site, and forecast the start and
completion times of the activities within the schedule. These functions provided by the workbench
include the following high-level activities:

1) Candidate Plan Creation -- from the production requests prepared by the Production request
Editor

2) Plan Activation -- activating a candidate plan

3) Updating the Active Plan -- feedback from the processing into the active plan.

4) Canceling/Modifying the Active Plan

As described previously, activating a plan entails rolling a portion of a selected plan into the
AutoSys COTS. This “schedule” is then managed within the Data Processing subsystem. The
forecast times generated within the planner are used to set up operator alerts that would make the
operator aware of departures from the predicted schedule. The production planning workbench can
periodically update it's predictions using feedback from the AutoSys.

4.6.4.2 Mapping to objects implemented by this component

As described in sections 4.3.4 to 4.3.6.

4-140 305-CD-010-001

4.6.4.3 Candidate products

The Production Planning Workbench is build largely from COTS components. The planning
workbench is built on top of a Planning Object Library that provides a framework for the
application. This object library is provided by C++ class libraries which are described in the
following section.

Job scheduling COTS are coming close to providing more capabilities that would meet some of the
production planning capabilities, none of the packages at present meet the full requirements of the
ECS. The AutoSys / AutoXpert packages are developing capabilities that at later releases
capabilities may be suitable. The ECS is committed to influencing vendor direction to leverage
capabilities to cover additional of the ECS requirements.

4.6.5 Planning Object Library

4.6.5.1 Purpose and Description

The Planning Object Library provides a reuse framework for build the Planning Workbench
application. As described within the Planning Workbench CSC section 4.6.4, there is no complete
“off the shelf” solution that covers all the Production Workbench requirements, and therefore reuse
of robust class libraries is the best approach for developing this application. A number of planning
and scheduling frameworks have been evaluated for scheduling in the Planning Object Library;
these frameworks are described in the Scheduling Engine Evaluation Trade. In general, these
libraries provide similar capabilities. The Hughes Delphi Scheduling Class Software has been
selected from those considered since it consists of generic, non-application specific libraries and
there is a high degree of expertise within the ECS with using these Libraries, both within the
Planning subsystem through prototypes and within FOS where these libraries are used in the
mission planning.

4.6.5.2 Mapping to Objects Implemented by this component

The CSCI object model presented in section 4.3.4 showed an abstract view of the Production
Planning Workbench. This was mainly due to the fact that the complexity of the planning and
scheduling aspects of the CSCI would overwhelm the rest of the model and scenario descriptions.
It also the case that the capabilities could be implemented a number of different ways given
different frameworks or COTS approach taken. The following sections first give an overall view
of the Delphi scheduling class libraries and then show in detail how the Planning Workbench
application is designed to reuse the Delphi libraries.

4.6.5.3 Hughes Delphi Scheduling Class Libraries

The Hughes Delphi Scheduling Software is designed to assist in developing efficient and effective
scheduling and planning. It is composed of a set of user-oriented, integrated, modular tools.

The toolset provides building blocks to allow developers to:

• Model system resources that reflect all relevant operating states and constraints.

• Automatically create coarse or detailed schedules for all system resources based on
requests, using a variety of tailorable scheduling algorithms.

4-141 305-CD-010-001

• Provide high functionality interfaces for planners to review and edit service requests,
corresponding resource information, and generated schedules.

• Provide support for interactive development of contingency or impact studies (What-Ifs).

Delphi is based upon a system of distributed, modular components. Each component represents a
distinct planning function, and each component can be plugged in, disconnected, or replaced as
changing concepts, system needs or software upgrades require. In addition, each component has
been engineered utilizing object-oriented methodologies. This provides many significant benefits,
including:

• Functionality - The software can be easily tailored to implement application specifics.

• Extensibility - Once delivered the system can be easily enhanced without the need for
complete replacement or extensive and costly block changes.

• Maintainability - All functions (data and process behavior) are well encapsulated in the
software architecture. Therefore, should a problem occur it can be easily identified and
isolated. Metrics for maintenance indicate exceptional savings for customers in O&M costs
for this software.

These features combine to support a high degree of system flexibility and expandability, and in the
long term contribute to a significantly lower system life-cycle cost.

All of the tools in Delphi are built on a foundation called the Hughes Class Library (HCL). This
product provides a framework for all the objects in the system and provides generic functions for
services such as time, collections (list, sets, arrays, etc.), stream input and output, inter-process
communication, and windows displays.

4.6.5.3.1 Delphi Resource Model

At the heart of Delphi is the Resource Model. In order to generate a timeline schedule for activities
the Planning Workbench system must have detailed knowledge of both the activities that are to be
performed and the resources that are required to be utilized or expended in order to complete each
activity. Delphi's Resource Model supplies the structure to define these entities. In addition, the
Resource Model acts as the owner of all data used by Delphi and therefore provides all data
management services to the toolkit and the user.

The Resource Model consists of resources, resource states, and all relevant resource constraints.

Resources. All resources that are necessary for planning and scheduling are implemented as
objects within the Resource Model. Application specific resource classes/objects can be derived
from the resource classes provided in Delphi. These more specific classes/objects contain the
attributes and behaviors that are unique to them.

Resource State. Besides modeling real world objects, another function of the Resource Model is to
keep track of the state of all resources over time. Real-time and periodic (batch) updates of the state
of all components of the system are sent to and stored by the resource model. For example, the
state of a resource may indicate whether it is available or unavailable, and the nature of its current
tasking.

Activities. In addition to resources and resource states, the resource model contains activities.
These are schedulable entities that represent system tasking. During scheduling, resources are

4-142 305-CD-010-001

assigned to an activity. The resource's state is then updated to include each new activity. In turn,
these updates can be directed as real-time modification to the timeline.

Constraints. Also in the Resource Model are the constraints present in the planning system. The
scheduling algorithm will consider constraints between resources when attempting to properly
allocate resources in a given plan.

The Resource Model defines, in both data structure and functional behavior, the resources being
utilized. Any constraints concerning reasonable, proper, of safe behavior are defined to the system.
The Resource Model also retains control over the definition of activities. These activities define a
sequence of operations that are required to perform a high level goal. Both elements to scheduling,
requests and resources, are managed within the flexible architecture of the Resource Model. Using
these pools of information, the scheduling algorithms optimize the application of activities to
resources to develop constraint-free plans for operational use.

Resource Model Hierarchies

There are two primary hierarchies within the Resource Model: whole/part activities and resource
activities. The whole/part hierarchy provides an aggregation of many associated system objects;
for instance, a “whole,” such as the plan, contains “parts,” such as resources and activities. In this
manner. the Resource Model relates its individual inheritance hierarchies to create a global,
consolidated, constraint-free plan.

A second hierarchy involves the individual resources and activities with which the planning and
scheduling system must deal. In general, a resource hierarchy provides a detailed model of all
relevant system resources. The activities are defined as resource-independent descriptions of
operations that ultimately will be assigned to resources at specific times.

Each resource is responsible for maintaining a record of its state through time, for exporting
algorithms of general interest, and for modeling and applying constraints. The resource state
models what the resource is doing through time and may be different for each kind of resource.
Resources know what plans are available and can have a different state on different plans.

Use of Resource State

Clients of the resource model can interact with resource state in several ways. A client can interact
with resource state directly by asking a resource for all state on a given plan for a given time
interval. The client would then have a detailed knowledge of the resource and can have as much
knowledge of the resource and its inner workings as appropriate.

A client can also ask a resource for time intervals in which particular constraints are satisfied.
These intervals may be displayed on another process, for example a timeline, in order to
communicate to the user the window of opportunity for the resource. To obtain these intervals, the
resource would iterate through all of its states and check with compatibility against existing state.

Resources can have a heterogeneous state. For examples, a resource could be tasked for a time
interval and also be unavailable for another time interval. Both of these cases are supported by the
resource state mechanisms.

Scheduling Activities to Resources

Resources that can be tasked can generally be asked to allocate (check constraints), unallocate (re-
move tasking), force allocate (do not check constraints), check allocate (check constraints but do

4-143 305-CD-010-001

not change state), and when allocate (tell me when constraints, if ever, are satisfied for a given set
of tasking). This functionality is generally used by schedulers. For example, a sequential scheduler
could order activities and then try activity/resource combinations until the activity was scheduled
or until no combinations were left. The sequential scheduler will then move on to the next activity.
Activities can be ordered by user-set priority, laxity, availability, or any other mechanism. The im-
portant point is that the scheduler only organizes the activities and orders the requests for resources.
The resources themselves know what constraints to check and how to generate resource state. The
scheduler may have to have resource-specific knowledge during the ordering process, or may use
heuristics to optimize utilization of a resource.

4.4.5.3.2 Delphi Architecture

The following section describes the software architecture used by Delphi. Delphi is composed of
a series of modular libraries of software. Each library defines a series of groupings of both data
and functions that are referred to as classes. The classes serve to provide the mechanism for data
structures and manipulation functions to be encapsulated or localized, thereby providing discrete
functionality that can easily be developed and debugged. These objects provide the atomic
functionality to all Delphi tools.

4.6.5.3.3 Hughes Class Library

The Hughes Class Libraries form the core from which all scheduling products are developed, thus
providing real cost savings in development, test time, and maintenance costs. The Hughes Class
Libraries are implemented in C++ according to the current standard, as set forth in the AT&T Ver-
sion 2.0 C++ Programming Language Standard. The bottom layer of software usage is composed
of X-Windows code, per the X11 standard. HCL utilizes X11 and allows the user application code
to make direct calls to X11, if necessary. Within HCL is a display class of utilities that support the
Motif display standards. These libraries have been in existence since 1990, and have been thor-
oughly tested and fielded in several operational systems.

The Hughes Class Library (HCL) is a library of C++ class declarations. These declarations are
general purpose programming utilities, and include:

• display classes (XView, XGL, and Motif)

• collection classes

• Inter-process communication classes

• other miscellaneous utilities (e.g. string, rectangle, command line, etc. classes)

HCL contains several libraries: misc, dispx, mdisp, and ipc. These are summarized below:

misc Library

The 'misc' library supports the collections in linked list array, or set format. It provides iterators
over each type of collection for ease of movement throughout the collection. Collections can safely
have multiple concurrent consumers. HCL allows classes derived from a common base class
(HObject) to be stored in the same collection, thus allowing heterogeneous collections.

The choice of collection type (array, list, set) does not affect the application code. These collection
types all are derived from a common class that established the protocol for the derived classes.

4-144 305-CD-010-001

This library also contains classes that provide various date/time functions, command line
information, timer functions, string functions, and vector and matrix functions.

dispx Library

The 'disp' library includes classes for drawing using XGL utilities. It has classes that encapsulate
XGL contexts, rasters, fonts, and color usage. It also has classes to maintain display regions and
collections of sub-regions.

mdisp Library

The 'mdisp' library supports displays with the look and feel specified in the Motif Style Guide. The
library uses the Motif toolkit from the Open Software Foundation (OSF). The Motif toolkit is based
on the X-Toolkit Intrinsics (Xt), which is the standard mechanism on which many of the toolkits
written for the X-Windows System are based. The user will notice that the library encapsulates
capabilities at all three levels (i.e. Motif, Xt, and Xlib).

The library provides classes that allow the user to create and manipulate X-Windows, color maps,
events (i.e. keyboard, mouse buttons, window enter/exit), and user interface objects called widgets
(i.e. menu bars, pulldown menus, buttons, scrollbars). There are classes that provide displayable
regions, subregions, rectangles, scalable fonts, strings, and colors. Mdisp also provides a class
implementation of the graphics context (GC).

The DAppl class provides a template for a display application. It provides the behaviors to create,
run, and destroy the application. The class does not provide a base frame.

ipc Library

The 'ipc' library contains classes that encapsulate interprocess communications, providing a simple
interface for the programmer. It is an implementation of Berkeley sockets and XDR streams.

Messages derived from a common message class (HMessage) can be passed between processes
without the ipc code knowing anything about the contents of the message. This isolates the code
that does know about the message content, making for a much easier, faster development and easier
maintenance.

4.6.5.3.4 Delphi Reuse Libraries

The framework for all scheduling applications is HCL. In addition to this core product are reusable
libraries of classes for virtually all aspects of a scheduling system. For purposes of discussion,
these libraries will be grouped into four categories. These categories are: Scheduling, Resource,
Timeline, and Planning Class Libraries. All libraries build upon the base of the HCL and are de-
veloped in the C++ programming language.

Scheduling Class Library

The Scheduling Class Library provides a framework for the incorporation of scheduling algo-
rithms.

Reusable Classes:

SResource (class modeling resources with scheduling) - Each SResource specifies protocol for
allocation of an activity to a resource for a time interval.

SRsPool (scheduling resource pool) - An instance of this class provides a storage mechanism
for quick retrieval of scheduling resources (indexing by associated resource ID). Derived

4-145 305-CD-010-001

classes can provide special queries that are typically process non-specific. For example, fill
a given collection with all scheduling resources of a given type that have no state for a given
time interval.

SSimpRs (class modeling resources with mutual exclusion) - Each SSimpRs is associated with
an RResource and implements allocation members that assume a mutual exclusion
constraint.

SUpdCatAbs (resource model change notifier) - SUpdCatAbs is a base class that sets up
protocol for registration of changes of resources, their states, activity changes, and plan
changes. It also has protocol for flushing these change notices. Derived instances of this
class might keep lists of clients interested in changes, and notify these clients when changes
take place.

SaActPriSrtr (activity priority sorter) - This class customizes the sorter for activity
priority.SaAllImpct (Impact Scheduler) - Instances of SaAllImpct know how to accept lists
of activities and edit the resource model accordingly, using impact scheduling. The plan
that is edited is the one already set by using the SaComponent member function plan().

SaAllNImpct (Non-Impact Scheduler) - Instances of SaAllNImpct know how to accept lists of
activities and edit the resource model accordingly, using non-impact scheduling. The plan
that is edited is the one already set by using the SaComponent member function plan().

SaAllocator (activity allocator) - Abstract class used to define generic protocol for allocating
schedulers.

SaArySorter (array sorter) - This class uses the system sort algorithm to perform sorting.

SaComponent (scheduling component) - Abstract class used to define generic protocol for
scheduling algorithm components (sorters, filters, allocators, refiners and post processors).

SaFastFit (fast fit allocator) - This schedule establishes protocol for fast fit scheduling. The
algorithm used is a first come, first serve algorithm.

SaFilter (allocation filter) - Abstract class used to define generic protocol for filtering an area
of a plan.SaInflator (allocation inflation post processing) - This scheduling component
class tries to inflate allocations.

SaPostProc (allocation post processor) - Abstract class used to define generic protocol for post
processing schedulers.

SaRefiner (allocation refiner) - Abstract class used to define generic protocol for refining an
area of a plan.

SaSorter (activity sorter) - Abstract class used to define generic protocol for sorting a collection
of activities.

SaSurgStrike (surgical strike allocator) - This schedule establishes protocol for surgical strike
fit scheduling. The consumer can provide an actual allocation algorithm.

Resource Class Library

The Resource Class Library provides the structure for defining application domain resources and
it builds upon both HCL and the Scheduling Class Library. The Resource Class Library provides
templates to define resource models capable of managing discrete resource states and mechanisms

4-146 305-CD-010-001

for assigning resource availabilities to resources. In addition, inter-request correlations, such as
pre-requisite, co-requisite, and post-requisite constraints, preferences, consumable resource mod-
eling, and specific configuration requirements, are addressed. Each of these resource definitions
will be used by the schedule deconfliction processes to provide a constraint free plan. When an ac-
tivity is defined, multiple resources can be identified as being applicable to that activity.

Reusable Classes:

RActAll (information about an activity allocation) - This class adds an activity to the base
allocation. An example use is as a base class for modeling allocation of an activity to a
bunch of resources. In that case, the derived class would have explicit resource support.

RActIdFactAbs (Unique activity id factory) - Instances of RActIdFactAbs are activity id
generators. You can ask them for the next allowable activity id that can be assigned. This
class has the notion of a global RActIdFactAbs object and provides a static nextId member
function so that you do not have to have a specific instance everywhere you want to use it.

RActIdFactMem (Unique activity id factory) - Instances of RActIdFactMem are activity ID
generators. You can ask them for the next allowable activity ID that can be assigned. This
class initializes its activity ID range from the current activity pool.

RActPool (activity pool) - An instance of this class provides a storage mechanism for quick
retrieval of activities (indexing by activity ID). Derived classes can provide special queries
that are typically process non-specific. For example, fill this collection with all activities of
a given type that have been allocated on a given plan.

RActState (tasking on a resource) - RActState is a resource state class that is generated by an
activity.

RActivity (scheduling activity) - This is a base class for scheduling activities. It establishes
protocol for all derived activities.

RAll (information about an allocation) - Each allocation has a time interval an optional plan
name and a lock. If the plan name is empty, the allocation can pertain to all
plans.RComplexAct (collection of activities) - Each instance of this class holds a collection
of activities.

RDegState (tasking on a resource) - RDegState is a resource state class that represents a
degraded resource. Presence of a direct instance of RDegState means that a resource is
broken. Derived classes can represent how a resource is degraded.

RPlan (plan) - This is a base class that models the allocations of plans to resources.

RPlanPool (plan pool) - An instance of this class provides a storage mechanism for retrieval of
plans (indexing by plan name). Derived classes can provide special queries that are
typically process non-specific. For example, fill a given collection with all of the activities
in the activity pool that have different allocations on two plans.

RResource (class modeling an entity with state through time) - RResource is a class that models
an entity that has state through time. State is kept in RRsStateLists. Each RResource may
have more than one RRsStateList. These state lists contain information which is mapped to
a particular name (a “plan”). State lists usually contain things derived from RRsState. In
other words, each resource object may maintain state information for multiple plans

4-147 305-CD-010-001

simultaneously. There is an additional, plan-independent state list that each RResource
maintains. This state list may be used to hold plan independent information such as state
that applies across all plans. RResource objects maintain a notion of a “current” state list.

RRsPool (resource pool) - An instance of this class provides a storage mechanism for quick
retrieval of resources (indexing by resource ID). Derived classes can provide special
queries that are typically process non-specific. For example, fill a given collection with all
resources of a given type that have no state for a given time interval.

RRsState (base class for resource state) - Abstract class used to establish protocol for any kind
of resource state.

RRsStateList (resource state list) - An HEpochIntervalList with a name. An important
difference between this class and an HEpochIntervalList is that this class empties() its
contents upon destruction (unlike a vanilla HObjCollection, which clears() it's contents).

RSchOpp (a scheduling opportunity) - Each scheduling opportunity has a time interval and a
resource id, representing an possible allocation of an activity to that resource and interval.

RSchRqst (resource scheduling request) - This class is a list of scheduling opportunities, which
are specified as instances of RSchOpp, with an activity id specifying the activity to be
allocated using the opportunities and a parameter indicating how many of the opportunities
must be satisfied for the entire scheduling request to be satisfied. Only derivations of
RSchOpp should be added to this class, and the add behavior of HObjList has been
overridden to enforce this.

RSimpleAct (simple scheduling activity) - Each instance of this class models something
happening on a resource in the system. Simple activities add allocations to the concept of
Activity.

Timeline Class Library

The Timeline Class Library provides mechanisms to support the displays of time-ordered
information in a graphical manner. The generic Delphi timeline contains a two-dimensional,
composite region displaying resources and their use versus time. Each display is composed of
rectangular subregions that represent resources aligned down the vertical axis to be viewed over
time, and time across the horizontal axis. Scrollable windows are utilized to allow the user to
manipulate the displays to view the required resource profiles. Events for any period of time are
modeled and displayed. Each event is indicated on the display with a text-label, color and state
information, all of which can be customized for the specific application. The Timeline is a
powerful visualization device allowing the user to navigate hundreds of resources profiles. Each
event on the timeline can be compressed, expanded, edited, unallocated from its resource, locked
and unlocked. Visually the user sees more detailed information the shorter the timespan being
viewed, thus allowing a zoom cycle capability for all Timeline displays. Use of interactive point-
and-click devices speed the user through birds-eye views of schedules down to the component parts
and resources allocated to a single user request on the timeline. The timespan is adjustable and has
no technical limits (although practical limits may insist only a portion of large schedules be viewed
at any time).

The Timeline Class Library provides class implementations for drag-and-drop features between
subregions, event manipulation, and supports multiple views of events. The use of color to convey

4-148 305-CD-010-001

importance, hierarchy, or groupings can be defined by the Customer, and color changing functions
are provided with the Timeline classes. Scroll bars and multiple windows are supported. A time
probe that anchors the center of focus of the display and provides default values of the time window
of interest to other Delphi components, such as schedule Activity Editors, is also provided. The
Timeline classes establish a generic structure for events.

Planning Class Library

The Planning Class Library provides the display and integration structure to all Delphi scheduling
applications. This library provides the interface slots to allow a developer to build up from the
foundation of the components of Delphi into a coordinated scheduling environment. Additional
capabilities provided within the Planning Class Library are: error message display and logging,
distribution of resource states and coordination of schedule modifications, resource editing,
scheduling activity creation, deletion, and dissemination, (planning synchronization across
multiple users).

4.6.5.4 Use Of Delphi In The Planning Workbench

4.6.5.4.1 Customization of the Resource Model Hierarchy

The Planning design takes advantage of Delphi by utilizing the object-oriented mechanisms of
inheritance. Elements of the Resource Model hierarchy have been customized for the Planning
problem domain. Derived resources have been designed to customize resource state and override
or add specialized algorithms and constraints. Some derived resources add scheduling operations
which take activities and check constraints and generate resource state through time.

The derived Planning resources have been designed in a parallel hierarchy, as a result keeping the
natural resource hierarchy and the scheduling hierarchy separate. Derived activity classes have
been created that model the types of activities appropriate for the Planning resource model. A key
point is that the specific additions to Planning system have been built upon the foundation already
provided by the existing Delphi Resource Model structure. Many additions are simple derivations
of existing planning and scheduling objects.

Figure 4.6-1 shows the Planning extensions to the Delphi classes previously described in section
4.6.5.4.4. It can be seen from the diagram that the Planning-specific class

PlResource has been
derived from the Delphi class RResource, and as a result, the PlResource class inherits all of the
associations RResource has with other classes in the Delphi Resource Model.

4.6.5.4.2 Customization of the Scheduling Class Hierarchy

The Delphi Scheduling Class Library provides a framework for incorporating a variety of
algorithms in the Planning Workbench. The Planning Workbench reuses the classes the Scheduling
which define protocols for sorting, filtering, resource activity generation, and refinement. It is the
goal of the Planning Workbench to employ the Scheduling framework to construct algorithms
which optimally allocate activities to resources, especially local disk storage.

Currently, the processing COTS, AutoSys, does not directly track required disk usage when
releasing PGEs for execution. Therefore, it is the responsibility of the Planning Workbench to
analyze interdependence of PGEs and their file requirements and present the PGEs to AutoSys for

4-149
305-C

D
-010-001

RActAll

RActIdFactAbs

RActIdFactMem RActPool

RActState

RActivity

RAll

RComplexAct

RDegState

RPlan

RPlanPool

RResource

RRsPool

RRsState

RRsStateList

RSchOpp

RSchRqst

RSimpleAct

SaAllocator

SResource

PlComputerPlString PlDiskPartition

PlResource

SSimpRs

:04

Figure 4.6-1. Delphi Resource Model

4-150
305-C

D
-010-001

SRsPool

SResource

SSimpRsRResource SUpdCatAbsRRsStateList

RRsState

SaActPriSrtr
SaAllImpct SaAllNImpct

SaAllocator

SaArySorter

SaComponent

SaFastFit

SaFilter

SaInflator

SaPostProcSaRefinerSaSorter

SaSurgStrikeRActivity

RPlan

RSimpleAct

Figure 4.6-2. Delphi Scheduler Model

4-151 305-CD-010-001

execution in a way which will maximally utilize disk resources and minimize file swapping
between the Data Server and local storage.

4.6.5.4.3 Customization of the Timeline Class Hierarchy

The Timeline is one of the primary visualization tools within the Planning Workbench. The
Timeline will provide a GANTT style view of the requested allocation of PGEs. In the Timeline,
horizontal boxes will represent PGEs, and the boundaries of the boxes will represent start and end
times. The Timeline enables the user to view in an instant the breadth of system resource utilization
over time. Information displayed on the box (textual, color, graphical, etc.) will aid the user to
search for individual PGEs. Several instances of the Timeline can be viewed simultaneously to
compare the results of various scheduling algorithms.

4.6.6 PDPS Database CSC

The Planning and Data Processing subsystems (PDPS) require that much of its data be stored in a
repository in order for data processing and planning activities to be executed, managed. and
monitored. These data attributes are known as “persistent” attributes, as they need to be housed in
a repository “persistently” over time. This repository is a relational database management system
(RDMS).

Objects and associations identified in the OMT model are manifested in this repository in one of
two main ways. First, objects with persistent attributes are manifested as tables - with columns
allocated for the storage of these attributes and with keys that make explicit the implicit
relationships in the model. Second, some OMT methods in the identified model become “stored
procedures” or “triggers” within the database which, combined, will manage the events which take
place within and between objects as plans are made, executed, and managed.

The creation of the PDPS RDMS requires that the OMT model, which is a conceptual or “logical”
model of the subsystem objects and functions, be mapped to a real-world or “physical”
implementation of these objects and functions.

4.6.6.1 Database Logical Design

The Logical Model of the PDPS, which uses OMT methodologies, is the model of record. This,
OMT model, however, is wholly logical. That is, this model can not be the engine for
implementation level work as there is no direct connection between the object-oriented concepts
of classes, association, methods, and the like to a RDMS. Thus, a “physical” or real-world design
equivalent of the OMT must be articulated.

The physical design equivalent for OMT for a RDMS implementation is an Entity-Relationship
Diagram (ERD), wherein the design objects have direct physical analogues within the
implemented database.

Persistent objects/attributes required by the PDPS subsystem are stored as Sybase tables and
columns in the RDMS. To map the OMT persistent attributes to these tables and columns we use
an OMT-ER matrix. This matrix facilitates the mapping of a logical model of OMT objects to a
physical model of relational database tables via an Entity-Relationship Diagram (ERD).

OMT objects and their associated attributes are catalogued for all objects with persistent attribute
requirements. These catalogued objects are then mapped to T-SQL schema level tables and

4-152 305-CD-010-001

associated columns via the OMT-ER matrix. The resultant matrices from this mapping are listed
in the SDPS Schema definition. This catalogue of the mapping of the OMT model to an ERD
model is used both for traceability i.e. how objects were “physically” implemented in a RDMS and
for tracking derived objects and tables that are identified in the process of this mapping.

The following logical rules are used during this mapping of OMT to ERD's

Rule 1 Objects without persistent attribute requirements are not mapped to the ERD

Rule 2 Objects with persistent attribute requirements are mapped to Sybase Tables

Rule 3 Attributes associated with these objects are mapped to columns within these tables

Rule 4 These tables are keyed with appropriate primary keys.

Rule 5 Any derived objects, like primary keys, are annotated.

Rule 6 Any attributes which are at odds with a RDMS implementation (e.g. arrays, lists) are
exploded into to derived tables as appropriate. These derived tables are annotated.

Rule 7 Associations in the OMT model are implemented via primary & foreign key logic

The following sequenced steps are taken during this mapping of OMT to ERD's

Step 1 Objects are mapped to tables

Step 2 Attributes are mapped to columns

Step 3 Associations are mapped to primary/foreign key logic

Step 4 Attributes are annotated with default values, null processing logic, example records
and so on.

4.6.6.2 Transformation of the ERD to T-SQL - Physical Design

The identified matrices of the mapping of OMT objects to Sybase tables which are the net effect
of the mapping of the OMT model to an ERD are entered into an appropriate ERD CASE product.
All derived attributes and tables will entered into this CASE product as well. Rules and steps for
entering this information do not apply at this phase as all rules and steps are applied during the
mapping. Rather, this is an information transference from text into a vehicle which will produce
low level Data Definition Language (DDL) in Transact SQL - e.g. create/drop table, create indexes,
and create primary/foreign key relationships.

4.6.6.3 The Design of Normalized Tables

Normalized RDMS tables are tables that meet specified database design criteria and escalating
levels of design constraint. At zero normal form all data resides in a single repository - there are
zero constraints on how data is stored. Each level of normalization adds a constraint to information
storage. For the PDPS database the normalization rules in use will constrain the data to a third-
normal form level of design.

This normalization method constrains the data tables in PDPS to meet the following three criteria:

1st Form:Any populated column in a table has a discrete value.

Result:A column in a table that is used to store information about input data can store information
about one input data item or a pointer to a list of input items somewhere else in the database but it
cannot store a list of input data information within a column

4-153 305-CD-010-001

2nd FormAll tables are keyed.

Result:Any record in a table can be fully identified by the column(s) that are the record level

identifier.

3rd Form:Each column within the table that is not the primary key or part of the primary key is fully
dependent on the primary key.

Result:There can be no partial or transitive dependencies for any non-key columns within a table

All non-key columns in the table are a complete function of the primary key.

4.6.6.4 Database Interface

The PDPS DBMS CSC includes interface classes will be responsible for mapping persistent data in
object oriented applications to the Relational Database Management System.

For each persistent class in the object model a corresponding database interface class is required.
The database interface classes will be used to retrieve object information from the database,
manipulate it, and store it back into the relational database. Each of these classes will have its own
set of methods that define its interface to the database (see Figure 4.6-3 for a diagrammatic view,
Figure 4.6-4 for a OMT depiction). Typically, each class provides the creation of persistent object
instances, updates to attributes, querying using ANSI SQL or stored procedures, and deletion of
objects from the database. Each of these methods make the appropriate database calls to implement
its functionality in the database.

This interface also manages the connection between the client and server, creation of multiple
communication channels for parallel processing, interchangeable submission of statements between
the client and server, associated answer and result sets, and exception and error handling. This
interface consist of compiled functions on the client software.

PDPS plans to use third party software such as Rogue Wave's DBtools.h or a similar product to ease
the development and increase productivity for developing the database interface. The third party
product will serve as a wrapper for the SQL functions within the C++ applications.

4.7 PLANG CSCI Management and Operation
The following sections discuss the management and operation of the Planning CI. Specifically, the
manner in which the CI is managed at the local and system levels is discussed. The approach to the
development of operator interfaces for the Planning CI is then described. Finally, the approach to
reporting for the Planning CI is described.

Before examining management and operation of the Planning CI at the system level, the local level
management view of this CI is considered. That is, the operations and management of the CI with
short range considerations. These include the subscription submittal activities, the production
request editor, and the AI&T-developed PGE profile editor. These CSCs are used to create or update
data structures local to the planning process. With longer range implications are the subscription
manager, and the planning workbench.

4.7.1 PLANG CSCI Operation

A key consideration to remember is that operations personnel will not be required to routinely insert
individual data processing requests as has been done in the past for some systems. That is,

4-154 305-CD-010-001

PGE

myPge
myPgeName

getPge
setPge

OO Application
Class

PGE_DBI

pge_id
pge_name

select_pge
insert_pge
update_pge
delete_pge

Database Interface
Class

Database
Table

PGE Table

PGE Record 1

PGE Record 2

PGE Record n

Figure 4.6-3. Database Interface Classes

4-155 305-CD-010-001

Figure 4.6-4. Database Interface Object Model

PlDbPersistent

PlDbBaseClass

select

insert

PlPersistantClass

myPersistentAttributes

myNonPersistentAttributes

update

delete

select

insert

update

delete

trigger_procedures

stored_procedures

application_methods

4-156 305-CD-010-001

once the instructions for processing a type of data with a particular PGE have been inserted into
the Planning database, the error-prone, repetitive entry of data processing instructions for each data
product is avoided. Data processing will be primarily data driven. Plans are constructed based upon
the data that is expected to arrive from external sources or based upon the intent to reprocess
existing data with revised algorithms. As data arrives at the DAAC, the PDPS systems will be made
aware via subscriptions of the existence of the data and processing will begin when all necessary
data files have arrived and are staged.

Production Request Editor

Typical of local management activities is the Production Request Editor CSC which provides the
capability to define and modify PRs that are used as a part of the planning process. This interface
is used by operations personnel to enter the production requests that is the starting point of the
planning process. The PRs do not need to be added/created for each job to be run, but only for each
job type or class to be run. The actual job stream or script is built up from this using information
contained in the planning database, and submitted as a part of the planning and processing activity.

Subscription Submittal

The Subscription Submittal CSC permits the operations personnel to efficiently enter subscriptions
to Data Server/Ingest for one of the types of data needed by a PGE for processing. This CSC is a
non-persistent or utility type application that is typically used during the algorithm integration and
test phase for the PGE. At that time, the planning database is initialized with the information
needed to plan and schedule the execution of the PGE during normal operations. After the
subscription has been entered, no further operator interaction is ordinarily required to insure that
the subscription notifications are transmitted to the Planning CI. This CSC allows operations to
view current outstanding subscriptions, and to modify or delete them as required.

Planning Workbench

The Planning Workbench CSC includes a collection of utilities to enable the operations personnel
to perform the planning function for the DAAC. These include capabilities to create candidate
plans, activate a candidate plan, update and cancel an active plan. The Planning Workbench CSC
allows operations personnel to devise plans for routine production data processing and
reprocessing. The production scheduling personnel selects Production Requests from the Planning
database and includes them into the planning process. Candidate plans are developed based on the
predicted availability of the necessary input data, PGE processing characteristics, planned
availability of resources at the DAAC, and priorities and policies established by the local DAAC
management. The Planning Workbench CSC allows the production scheduling personnel to create
multiple candidate plans for evaluation, select the candidate plan that conforms best with the
DAAC system operations plans, and to retain the plan for future modification. The Planning
Workbench provides the capability to activate the current plan which thereafter guides the
activities of Processing. This CSC also includes the capabilities to update or modify an existing
active plan or to cancel an active plan.

A concept of the Planning Workbench CSC is to take advantage of the human capabilities to
distinguish a 'good' plan from a less optimal plan. The capabilities provided here allow the
operations personnel to generate multiple candidate plans for comparison and evaluations. The
operations personnel can devise these plans by varying certain system planning strategy
parameters such as priority allowing the planning manager to automatically construct several plans

4-157 305-CD-010-001

and select from among them the one that is most suitable for the needs of that DAAC.

The key feature here is that each DAAC may construct the planning procedures that most readily
fit with existing operations procedures. For example, a planning cycle operations concept
developed earlier suggested that a 30 day and a 10 day candidate plan could be prepared by the
DAAC operations personnel to establish basic long and short term plans for processing objectives.
The Active Plan is assumed to be prepared from the latest 24-hours of the 10 day plan. However,
this concept of operations is only one possibility. The operations personnel at each DAAC can
prepare the processing plans that meet their needs best, e.g., a sequence of one week plans might
be desirable for another DAAC. In addition, the operations personnel may easily adjust the
priorities associated with a type of processing (standard, reprocessing, or, for Release B, ad hoc
processing) or with individual products. This capability allows the operations personnel to quickly
respond to changing priorities determined through NASA procedures.

During the planning activity, the Planning CI attempts to allocate data processing jobs to one of
the several processors that it has knowledge of as being available for processing. The Planning CI
may allocate a job to specific processor or to one of a pool of processors, depending on the needs
of the particular algorithm. In general, a pool of processors is available for data processing.
However, processors may be removed from service occasionally for a maintenance or upgrade
operation referred to as a “ground event”. In such a case, the Resource Manager for the DAAC will
identify to the Planning CI those processors that must be removed from service and the specific
time period when they are needed for service. Alternatively, the Resource Manager may identify a
resource, a time interval when the resource is required ('next Tuesday afternoon') and the duration
of the resource maintenance activity. In the case of the flexible planning window, the Planning CI
will select specific time period that best meets the needs of processing. Once the Planning CI has
selected the time period for the ground event, that interval reservation for the resource is fixed with
respect to any subsequent replanning.

Subscription Management

The Subscription Manager CSC manages the interface with Data Server/Ingest for the receipt of
subscription notifications. These notifications are provided to Planning as a part of the process
leading to the activation of PGEs. The notifications indicate to Planning that a granule of data
needed by a PGE has become available at Data Server/Ingest, for example, as the result of a Level
0 data set arriving from TSDIS. When all data required for processing has arrived, the Planning CI
will release the PGE to the Processing CI for activation.

This approach employs the common subscription notification scheme. It automates the process of
communicating with Data Server/Ingest CI for potential data arrivals. The Subscription
Management CSC is persistent - it is continually active and awaiting notifications. It isolates the
interfaces to Data Server/Ingest to a single element for receipt of notifications, simplifying the
management of the system. Predictions on the arrival time of required data are generated by
Planning. These are used to identify delayed data arrivals, allowing the operations personnel to
react to and resolve the situation.

4.7.2 System Management Strategy

The system management strategy as revealed by the PLANG CI is discussed in the following
paragraphs.

4-158 305-CD-010-001

4.7.2.1 System Management and Operations Philosophy

The primary design consideration for the Planning CI from the point of view of system
management and operations is that operator interactions with Planning be simplified and
automated as much as possible. In addition, the Planning CI provides operations with the needed
flexibility to respond to unexpected tasks as they arise. In part, the objectives of simplification and
flexibility are accomplished through well designed GUIs that aid in developing the needed
timelines.

4.7.2.2 PLANG CI and the System

The Planning CI is a part of the ECS System. It is integrated with the other ECS components via
the common management interfaces to participate in the ECS enterprise. The following paragraphs
address certain system management topics from the point of view of the Planning CI.

Startup & Shutdown

The Planning CI is integrated with the system management interfaces for startup and shutdown.
Via these interfaces, the operations personnel will control the initialization of the Planning CI
including planning database initialization. The controlled startup and shutdown insures that the
necessary coordination and synchronization of activities, within the Planning CI and with other
subsystems, is enforced. Adhering to these procedures insures the highest availability and
reliability for this critical component of the ECS system.

Fault Handling and Recovery

The Planning CI is integrated with the system management components to address fault handling.
By providing these fault messages to the appropriate operations personnel via a unified interface,
the consistent handling of component and system faults may be addressed. This permits the
personnel responsible for address faults to inspect the information at hand from across the system
and to aid him/her in identifying the appropriate cause of the fault. This scheme insures that faults
are addressed quickly and accurately, enabling the planning and processing of science data to
proceed without unnecessarily long delays.

System Maintenance Operations and Ground Events

Of particular importance to the Planning CI from the point of view of system management is the
scheduling and coordinating of ground events (e.g., maintenance activities, software upgrades, or
for testing activities) with processing. The data processing resources are, from the point of view of
system management, another resource that will occasionally be required for ground events. From
the Planning CI point of view, these resources are typically dedicated to the science data processing
activity and are therefore mostly reserved for planning and processing. The Planning CI supports
these views of the data processing resources through the planning process. The system Resource
Manager will identify (usually well in advance) the ground event that requires the resources that
are typically dedicated to the planning and processing activities. The Resource Manager provides
these requirements to the Planning CI for incorporation with its planning activities. These ground
events are dealt with by Planning as high priority activities whose resource requirements are to be
satisfied. After these events are planned for, the time allocations are locked-in, not to be changed
by subsequent planning and scheduling actions.

In a similar manner, as new hardware resources are introduced into the system to support science

4-159 305-CD-010-001

data processing, these resources are identified to the Planning CI as potential data processing
platforms but which are indefinitely scheduled out-of-service until the resources are fully
integrated and tested and released for use by processing. During the I&T phase for these new
platforms, they are scheduled accordingly. In this way, the Planning CI cooperates in the system-
level management of the data processing resources.

4.7.2.3 Interfaces

The interfaces of the PLANG CI and the support and coordination required for system management
and operations is discussed in the following paragraphs.

MSS

The Planning subsystem interfaces with the MSS for management related activities. As discussed
above for startup & shutdown, fault handling, and resource planning, the PLANG CI participates
with the MSS in the enterprise management activities to insure that Planning supports the system
objectives in a seamless fashion.

Data Server/Ingest

The Planning subsystem interacts with the Data Server/Ingest via the subscription interface to
achieve the system objectives of responsive and efficient data processing. The subscription
notification scheme for interfacing with Data Server/Ingest is a very flexible and robust approach
for signaling the presence of data to be processed. It removes operations effectively from the loop
of coordinating transfers of data. This simplification greatly improves the reliability of an interface
requiring operator interactions. In addition, the PLANG CI interface with the Data Server/Ingest
for staging of data prior to processing is an automated approach that, again, removes operations
from the roll of handling data transfers thereby making more reliable and timely the movement of
data for data processing.

Processing

The major interfaces with the PLANG CI are to the Data Processing subsystem’s PRONG CI
which are in most cases implemented through the planning database. Interfacing through the
database provides a simple and reliable scheme for the transfer of schedule information from one
CI to the other. The separation between the planning activity and the processing management
activity insures that as the requirements and technology evolve on either side of the separation, the
impacts to the other side of the interface can be controlled and limited.

AI&T

The AI&T activities in relation to the Planning activity are limited. AI&T activities populate
portions of the Planning database as a part of the installation of the science software at the DAAC.
This pre-operational activity provides for the people intensive effort of understanding the planning
and processing needs of the science software and then imbedding that extracted information into
the planning databases.

4.7.3 Operator Interfaces

This subsection describes the operator user interfaces provided by the Production Planning CSCI
to operations personnel. A general description of the framework and methodology employed for
the development of these interfaces can be found in section 4.5 of the detailed design overview

4-160 305-CD-010-001

(305-CD-001-001). This subsection augments that information with additional design information
which is specific to the Production Planning CSCI.

The operator user interfaces will be developed from a combination of COTS graphical user
interface (GUI) libraries and custom code. Hughes Delphi Scheduling Library will provide some
components for reuse, such as the Timeline, but these will have to be customized with Production
Planning code. In addition, custom graphical interfaces will be created with the aid of Integrated
Computer Solutions' Builder Xcessory . Builder Xcessory enables the developer to manage
Motif graphical user interface projects by providing a WYSIWYG, drag and drop, visual develop
environment. Once an interface is constructed, Builder Xcessory will generate C++ code which
represents the GUI and encapsulates the C-based Motif Widget set. The generated C++ code can
then be combined with other Production Planning specific code.

4.7.3.1 Off-The-Shelf Interfaces

As discussed in section 4.5.5, the Production Planning CSCI will reuse part of the Hughes Delphi
Class Library to develop graphical user interfaces for the Production Planning subsystem.

4.7.3.2 Production Planning User Interfaces

This section is intended primarily to describe the data that may be displayed to facilitate the
Operations of the Planning utilities. The precise determination of the GUI will be decided by
surveying the wishes of the users of the interfaces and demonstrating prototypes. The discussion
below does describe some interaction between the user and interface, this discussion is only
preliminary and used to illustrate one of many possible arrangements.

Production Request Editor

The Production Request Editor is a utility which provides operations personnel with the capability
to define and modify Production Requests (PRs) that are used as part of the planning process. The
GUI for the Production Request Editor will be constructed with the aid of Builder Xcessory and
combined with custom code which interfaces to the Planning database for storage of PRs.

Upon invoking the Production Request Editor, the operator may be presented with a main window
which serves to create new PRs and display stored PRs. The information to be displayed consists
of two parts:

1) A product selection sub-section for choosing a unique product
- Any of the information associated with the products that is stored within the PDPS
database may be displayed to facilitate the selection. This information includes Product
Name, Product Version, Instrument, Platform for the product. A table format may be
suitable for this information. The default PGE that generates a selected product may also
be displayed.

2) A Production Request sub-section for defining the PR to generate the selected product.

- A production period which consists of starting and ending dates and times is required. In
addition, an editable text field displays the priority of the PR. The operator can accept the
default priority for the PR or enter a new value. Once the PR production period and priority
are specified, the operator is encouraged to enter a comment to aid in uniquely identifying
the PR for later recall.

4-161 305-CD-010-001

If the operator chooses, he or she can override the default PGE by selecting. The operator could
be presented with a new window which provides a list of PGEs corresponding to the selected
instrument and product type.

The user to invoke a dialog for overriding specific parameters for the chosen PGE. A dialog can
present the user with a list of parameters and values for modification.

The utility provides a means of reviewing, editing, and deleting previously defined PRs.

The second set of functions available from the Production Request Editor is to review / modify the
Data Processing Request which fulfill the Production Request. This interface is being prototyped
within the IR-1 development and may be used to illustrate the data that can be diplayed.

Ground Event Editor

The Ground Event Editor provides a means of defining ground events to the Production Planning
database. The GUI for the Ground Event Editor consists primarily of a window for entering and
editing ground events. When the operator first invokes the Ground Event Editor, he or she can
begin to enter new information into the provided fields or recall a previously defined ground events
for editing.

Defining a new ground event is a two step process. The operator first provides information to
identify the ground event and then chooses the resource on which to schedule the event.

When identifying a ground event, the operator begins by entering the name of the ground event.
The operator then enters the priority of the ground event or accepts the provided default value.
Time and date fields are supplied for entering the earliest start time and the latest end time for the
event. The operator can then toggle the button which indicates that the ground event is to function
as a template. If the ground event is a template event, it will remain in the database indefinitely
and can be used to quickly define new ground events. Next, the operator can enter comments to
describe the ground event for ease of recall and for use in reports.

The next step in creating a new ground event is to select the resource on which the event is to be
scheduled. The operator is presented with a list of available resources from which to choose.

Once the ground event information is entered, it can be saved to the database or canceled. The
operator can also use the Ground Event Editor to recall previously defined ground events for
modification or deletion.

Production Planning Workbench

The GUI for the Production Planning Workbench includes windows for creating plans and a
timeline for displaying plans. When the operator invokes the application, a window appears which
allows the user to specify the name of a new plan or select a plan which was previously created.
To create a new plan, a window is provided to define the plan parameters. The operator first enters
the plan name and then enters the starting and ending dates and times. In addition the operator can
enter comments to describe the plan.

After the plan parameters are initially defined, a window may be presented which allows the
operator to select the Production Requests to be included in the plan. This window could include
two lists: a list initially full of unscheduled Production Requests and a list initially empty of
scheduled Production Requests. The operator can choose Production Requests and use arrow
buttons to move the selected entries back and forth between the scheduled and unscheduled list.

4-162 305-CD-010-001

A timeline window is available to display scheduled events in a graphical format. As described in
previous sections, the timeline is built on the hierarchy established in the Hughes Delphi Timeline
Class Library and is tailored to Production Planning needs. The timeline is a GANTT chart which
displays resources and their use versus time. When the timeline appears, it is first populated by
ground events which have previously been defined by the Ground Event Editor. As the operator
schedules Production Requests for a plan, the corresponding DPRs appear in the timeline window.
If the operator unschedules a Production Request, the corresponding DPRs will be removed from
the timeline. See section 4.6.5 for a further description of the timeline.

Several instances of the Production Workbench can be invoked to compare the results of different
plans in order to select the best plan to submit for production.

Subscription Request Editor

The Subscription Request Editor contains a single window from which an operator can enter
product subscriptions to the Data Server. Two lists could be provided: one list containing
unsubscribed products and the second list contains subscribed products. With the use of arrow
buttons, the operator would be able to select and move products between the subscribed and
unsubscribed product lists.

4.7.4 Reports

A variety of ad-hoc and canned reports will be available to the DAAC operations staff to assist in
monitoring of the activities associated with the Planning CSCI. These reports are readily accessible
given that Planning CSCI persistent data is maintained in the PDPS Database, a SYBASE
RDBMS. Also, ECS application management information is maintained in the MSS database,
which is used to log system events. The canned reports will include the following:

1) Candidate Plan Characteristics Report- This report will be associated with each generated
candidate plan and will contain summary information to be used to establish the quality of
the produced candidate plan. Information contained in this report will include the
following:

a) Definitions of inputs, i.e. Resources, Production Requests, and Priority Information,
and other planning data used to create the candidate plan.

b) Candidate Plan planned results. This will include the number of science data products
produced, number of DPRs executed, estimated time to meet all planned activities,
estimated resource utilization.

2) Production and Data Processing Request Status Reports - These reports will indicate the
status associated with a Production Request and its associated Data Processing Requests.
This information would indicate whether a given Production Request is active or inactive
in the current activated Production Plan. If the Production Request is active, the last
reported job status for the associated Data Processing Requests would be provided.

3) Planning Workload and Processing Turn-Around Reports - These reports will provide
tracking information on planned vs. actual processing results. The information provided
will include job statistics for a Data Processing Request to allow comparisons in planned
vs. actual resource consumption, planned start and end time vs. actual start and end time,
planned resource, i.e machine, allocation vs. actual resource, i.e. machine, allocation, etc.

4-163 305-CD-010-001

4) Planning Management Reports - These reports will provide the operations staff information
on Planning application software events which have occurred. This information will be
available from the MSS database.

Other ad-hoc reports can be defined to assist the Production Planning Operations staff in perform-
ing their activities. The PDPS Database is the repository used to maintain information on Produc-
tion Requests and associated Data Processing Requests, Data Subscriptions, PGE Profiles, etc.
These reports can be used to track the modifications and provide historical information on these
data objects. Because of the use of a consistent RDBMS throughout ECS, the sharing of informa-
tion between different databases is simplified and will allow for consistent definitions for any num-
ber of reports.

4-164 305-CD-010-001

This page intentionally left blank.

5-1 305-CD-010-001

5. Planning Subsystem Hardware CI

The Planning Subsystem includes a single Hardware Configuration Item (HWCI) which provides
the hardware resources to support its production planning and plan management for data process-
ing production management (plan implementation) functions. The Planning hardware consists of
one or more Production Planning/Management workstation(s) and a Planning (DBMS) server.

5.1 Hardware Design Drivers
The Production Planning/Management server(s) will support the Planning operations staff in per-
forming their routine production planning and management functions. Workstations are provided
for operations personnel access to management GUIs. These functions include candidate plan gen-
eration, plan activation, entry of production request information and report generation. The server
and workstation classes chosen will be based on projected planning workloads for that DAAC.

At the heart of the Planning subsystem is the planning and production database, with the database
server(s) providing the persistent storage for data which are shared between the applications. The
database marshals requests for concurrent access to data and provides the protocols to allow appli-
cations to be allocated to distributed platforms.

Design decisions have been made since PDR that affect the architecture of the Planning and the
Data Processing Subsystems. A primary design driver is the need to maximize the use of COTS
provided capabilities and to minimize custom code development. Some design elements that were
previously mapped to Planning have been moved to the Processing CSCI. The underlying catalyst
for this change has been the selection of the COTS products, AutoSys and AutoXpert, which will
be integrated into the planning and production subsystems providing a basis for monitoring and
management of ECS' science data production facility. The Production Management which has
been mapped to Planning has been divided between the Planning and Processing CSCIs. Produc-
tion Management, consisting of:

• managing subscription notifications from the data server and ingest, and

• managing active plan by receiving status feedback from Processing,

has now been divided between Planning and Processing. The net result is a software architecture
with lower internal coupling. Planning and production management shares a common database
(i.e. Sybase RDBMS) that eliminates the large amount of common data structures existing in the
preliminary design. These design decisions have driven the hardware architecture and will contin-
ue to do so throughout the prototype analysis which extends through CDR.

5.1.1 Key Trade-Off Studies and Prototypes

Most of the analysis with respect to planning and design investigations to date has focused on
COTS suitability and subsequent design partitioning ramifications. Since these aspects are of pri-
mary importance to the Planning Subsystem design on the whole the studies and prototypes have
not focused on hardware issues alone, but examine the planning design options and requirements
as an integrated system. Hardware support requirements are derived in this manner for this sub-
system.

5-2 305-CD-010-001

PRODUCTION MANAGEMENT COTS The exact nature of the COTS integration is currently
under investigation. A number of prototyping activities have been initiated to optimize integration
of AutoSys and AutoXpert on selected platforms and ascertain the preferred method given the
unique requirements of monitoring and managing ECS' science data production facility. Results
of these prototyping efforts will continue to impact the partitioning of functionality between Plan-
ning subsystem hardware and the Data Processing Subsystem (i.e. Queuing) hardware.

AutoSys usually comes bundled with Sybase or Oracle, and supports direct query/command access
to the database. A limited C language API structure implementation exists. "Job Boxes" allow
grouping of smaller, related jobs. Both data-availability ("file watcher") and inter-job dependen-
cies are handled easily. Reporting capabilities are limited (e.g. only start and stop time reported).
The system has fault tolerance capacity with the ability to run backup or "shadow" processors.
(Primary and secondary hardware capacity is discussed in section 5.3 on failover and recovery.)

A simulation of a CERES chain of PGE's was run across three machines, representative of the class
of systems expected to satisfy planning execution environment requirements:

• Sun SPARC 10,

• HP 735, and

• SGI Indigo.

The following aspects were tested: inter-job dependencies, file-watchers, cross-platform execu-
tion, and the usefulness of the console GUI and the alert manager. All features performed as ex-
pected. A test of a series of two second sleep jobs was run on one platform to determine where
overhead might be present in the system. Although some latency was found to occur in the early
stages of job execution, the cost in time was found to be negligible when compared to the total es-
timated times for a real ECS job.

DATABASE A study of relational and object-relational DBMS' were performed. Results of this
study was documented in the technical paper entitled: DBMS Benchmark Report, 430-TP-003-
001. As a result of this DBMS study, four DBMS' were selected for further evaluations: Illustra
2.3.1, Objectstore3.1, Sybase SQL Server 10, and UniSQL. Hands on experience were gained with
the products and testing product maturity. Tests were conducted on a Sun/Sparc 20 running Solaris
2.3. Three sizes of input data up to 3 million granules were used to test performance scalability.
Recent subsequent evaluations have resulted in selection of the Sybase DBMS as the common
COTS for the ECS (SDPS & CSMS).

5.1.2 Sizing and Performance Analysis

The discussion on sizing and performance analysis provided here is a synopsis of the process un-
dertaken prior to and for CDR. The DAAC Specific Volumes (for GSFC: DID-CD-305-014, for
LaRC: DID-CD-305-015, for MSFC: DID-CD-305-016, and for EDC: DID-CD-305-017) con-
tain full details on site configuration as well as sizing and rationale. The sizing and performance
analysis applies primarily to LaRC and MSFC for Release A, due to their requirements for TRMM
mission support. (See those volumes for more details.)

The Planning (DBMS) server(s) will support the Planning database that contains all the informa-
tion central to the functioning of the Planning Subsystem. To size the Planning (DBMS) server(s),

5-3 305-CD-010-001

it is necessary to estimate the size of the Planning database (for a pre-defined time period) and to
determine the database throughput it would have to support.

The estimated size of the Planning database for a pre-defined time period can be determined by
developing a model of the Planning database that identifies the type and amount of data to be
tracked. The seven principal categories of data to be tracked in the Planning database are as fol-
lows:

(1) PGE profiles,

(2) Production Requests,

(3) Data Processing Requests,

(4) Plans,

(5) Ground Events,

(6) Data Granule, and

(7) AutoSys.

DATABASE SIZING Based on the number of activations per day per PGE for a given epoch (as
established by the January 1995 ECS Technical baseline which incorporates Ad Hoc Working
Group on Production (AHWGP) information), the size of the Planning database (to support one
month's worth of processing) can be estimated for a specific instrument. The number of activations
per day can be used to determine the number of Data Processing Requests to be tracked. In addi-
tion, the number of Production Requests can be assumed to be a function of the number of Product
Generation Executives (PGEs) identified (AHWGP baseline supplied).

Assuming one candidate plan generation and two plan activations per day, the estimated size of the
Planning database, to support the case of one month's worth of CERES processing during Epoch
c, is currently estimated to be around 2.7 Mbytes total for Release A at LaRC.

Initial Planning database size estimates and details on the assumptions used can be found in Plan-
ning Subsystem Database Size Estimate for the ECS Project. (Reference: 440-TP-012-001). This
analysis has been revised and updated in a spreadsheet analysis in an addendum. Assumptions are
provided in the addendum.

Database sizing estimates for Release A (i.e. 2.7 Mbytes) are relatively low. The Planning data-
base server will be scaled for 3Q99, Release B at LaRC by examining Epoch k PGE requirements.
MSFC sizing is performed to take into account the entire TRMM LIS mission. The total database
size at LaRC for Release B is 31,887 KBytes or 31.9 MB.

DATABASE THROUGHPUT REQUIREMENTS To determine the Planning database through-
put, it is necessary to determine the number of times the Planning database would have to be ac-
cessed to either retrieve or store a certain amount of data, for a pre-defined workload. The planning
daily workload can be divided into the following major activities:

(1) Production request processing,

(2) Plan creation,

(3) Plan activation,

(4) Plan feedback updates, and

(5) Report generation.

5-4 305-CD-010-001

For each of the activities listed above, the number of read/write accesses (of 12 Kbytes each) from/
to the Planning database can be estimated based on the aforementioned number of PGE
activations per day. This is currently estimated to be on the order of 50,400 database accesses per
day (background load) to support CERES processing during Epoch c only. (This equates to be a
background load of less than 1 access/second.) The peak load (occurring during plan creation/
activation) is currently estimated to be up to 30,000 database accesses per plan or about 100
accesses/second (assuming a plan takes 5 minutes to generate). Actual estimates of the Planning
database throughput and supporting details can be found in the Planning Subsystem Database
white paper (Reference: 440-TP-012-001).

The planning task is client/server oriented. Beyond human interaction (via the Planning
component), the real specification and sizing rationale is established by transaction rates.
Transaction rates can be approximately predicted based on Technical Baseline data, The number
of processing activations per instrument at each DAAC site also provides insight into the number
of transactions.

Static disk sizing is a significant factor in sizing and takes into account the database sizing and
COTS load requirement estimates (and prototyping measures) into account. The provided
capacities are given in the DAAC Specific Volumes for the operational sites (LaRC and MSFC).

The Planning Server component would be is expected to require only one small server workstation
class machine (due to RMA requirements) for its execution at normal periodic intervals (e.g., one
session per day). The Process Queuing server, discussed as part of the Science Processing hardware
(SPRHW), acts in cooperation with and serves as a backup for this host.

Since one will act as a backup for the other, two small servers are required due to their role in
supporting the production planning and task queuing management functions of the entire DAAC’s
processing complement. In the event of failure of the primary host hardware, transition to a
secondary host will be facilitated. (See discussion on disk mirroring and primary/secondary hosts
within Section 5.3 which discusses failover and recovery strategies).

5.1.3 Scalability, Evolvability, Migration to Release B

With respect to Release B migration, Planning is somewhat of a special case. Database sizing and
processing were evaluated for Release A (Epoch c), which resulted in relatively insignificant
performance and capacity requirements. Since the Release A operations, given the current launch
and mission timelines, is relatively short before Release B operations commence, it was
recommended that the Release A server platforms be sized to Release B requirements for LaRC.
(Note that MSFC platforms are sized for the entire TRMM mission, therefore, Release B is not a
concern in this case). As a result, sizing estimation for Release B was undertaken as synopsized
above, and this information was used to size the Release A server hardware complement.

With respect to the Planning Subsystem, general growth and evolvability strategies are not
complex. The basic strategy, generally applied to client server configurations, is application of
technology refresh through "swap-out" of selected components. Due to Planning's importance to
the DAACs, this would have to be performed in parallel to DAAC operations, with initial
application of new hardware technology (servers, workstations, disk, etc.) applied within the AI&T
area (with later transiton to operations support). With respect to scalabilty and evolvability issues

5-5 305-CD-010-001

outside of general technology refresh, the following growths paths are applicable to the Planning
Servers and supported by the current design:

• Possible Use of SMP Servers -- Depending upon DAAC specific performance
requirements, the configuration could be a primary and secondary CPU within a single
server, e.g. SMP. The benefits to this approach would be "rightsizing" of the server
platform at a site to meet initial requirements, with an inplace upgrade capability to meet
out-year performance requirement growth. The feasibility of an SMP configuration is
currently being investigated, with the central issue being software and COTS compatibility
with the SMP architecture.

• Disk Requirement Growth -- The current Planning Subsystem design allows for both
standard and RAID disk application without rework of the core design. This can be
accomplished through the application of channel adapted disk capacity upgrades (e.g.
larger RAID units), or through network adapted disk servers addressible by the DBMS
servers. These growth decisions, which are likely to occur at the DAAC due to science
mission growth and/or expansion, will be made through predictions on future DBMS
transaction rate needs, as well as I/O and storage requirements.

5.2 HWCI Structure
A block diagram of the Planning hardware is shown in Figure 5-1.

Figure 5-1. Planning Block Diagram

Planning
(DBMS)

Server(s)

80 2.3

SCSI
or other

Host
BUS

FDDI

Production Planner
Works tation

SCSI

or other
Host
BUS

Host Disk

Host Disk
Host Disk

 RAID Disk
Host Attached

(RAID or Non-RAID
Based on Site
R equirements)

Planning Se rver Component

P roduction Planning and Queuing Managemen t Component

<CSMS ESN LANS >
LAN Techn olog ies a nd
Co nn ectivi ty Pe r Site

R eq uir eme nts

5-6 305-CD-010-001

The Planning Subsystem components maintain status and database information on: production
plans, ground resources, resource status, resource load, etc. The Planning Subsystem coordinates
the Processing Subsystem activities through data processing requests.

5.2.1 Connectivity

The intra- DAAC data interfaces will be implemented as follows: data interfaces will be of the
channel type (e.g., SCSI II); Control interfaces will be of the network type (e.g. FDDI, Ethernet).

The Planning and Data Processing subsystem network connectivity is illustrated in Figure 5-2.
Both subsystems will connect directly to the same FDDI ring. This figure highlights the primary
components of the Planning HWCI (shaded components apply to the Science Processing Sub-
system). Hosts (servers and workstations) will contain single-attached station (SAS) cards and will
be connected to an FDDI concentrator, which will in turn be connected to the FDDI switch via a
physically wired FDDI ring. Refer to Volume 0 for a general description of DAAC networks, and
to the DAAC Specific volumes, for MSFC and LaRC, for details on specific CSMS topologies.

Figure 5-2. Planning Generic Network Connectivity

In Release B, the network connectivity, as far as network types, is unlikely to change. This is due
to the performance requirements, so far measured by prototyping and estimated through analysis
of planning requirements, do not demonstrate the need for insertion of higher speed technologies.

FDDI Concentrator

Science
Processor

FDDI
Switch

AIT
Server

AIT
Work

Station(s)
Planning
Server(s)

Queuing
Work

Station

FDDI Concentrator

QA
Work

Station(s)

Science
Processor

Science
Processor

(for Processing, Reprocessing, AI&T)

(Does Not Reflect Unit Counts, Which Are DAAC Site Specific)

Planning
Work

Station

5-7 305-CD-010-001

5.2.2 HWCI Components

This subsystem consists of two hardware components:

• Planning Server

• Production Planning and Queuing Management

Each of these components is discussed in the paragraphs that follow and are elaborated on in Table
5-1.

Planning Server Hardware Component The Planning Server consists of one or more server class
machine maintaining status and planning database repositories. Sets of planning servers are pro-
vided for each DAAC site whose complement requires science data processing. The relative size
and number of these servers is DAAC specific and timeframe specific. For purposes of discussing
this design generically, two servers are assumed. One provided by the PLNHW HWCI, acting as
the primary DBMS server, and the second provided by the SPRHW HWCI acting as the production
queuer and/or secondary DBMS server as necessary.

Production Planning/Management Hardware Component This component contains the hard-
ware necessary to support DAAC operations users staff performing routine production planning
and task queuing production management operations functions. This component consists of small
workstation(s) (one or more, depending upon DAAC site and system release requirements prima-
rily affected by Operations Staffing needs).

Table 5-1. PLNHW Logical Components and Equipment Classes
Component

Name
Class/Type Comments

Planning Server DBMS Server
(Future & instrument pro-
cessing specific)

• From small to large server in class, depending
upon the site and system release in question.
• Predicted for Release-A are small DBMS work-
station based servers.
• Typically, two are provided per site to assure
fail soft operations of the Data Processing Sub-
system and the Planning Subsystem.
• Interfaces with other subsystems via the ESN
LAN interfaces.

RAID Disk (Host Attached) • RAID storage for storage of candidate and ac-
tive plans, as well as DBMS table and working
space.
• RAID technology not necessarily required for
Release-A due to small volumes and the interim
nature of TRMM operations at that time. Stan-
dard disk may or may not be used for Release-
A at some DAAC sites.

Production Planning
and Queuing Man-
agement

OPS Workstation(s) (small) • One or more operations workstations, on a site
by site basis that support local planning.
• Provides workstation processing, I/O and disk
resources.
• Interfaces with the Planning Server Compo-
nent via ESN LAN interfaces.

5-8 305-CD-010-001

5.3 Failover and Recovery Strategy
The Product Generation function has the following RMA requirements:

(1) Availability: 0.96

(2) Mean Down Time:<4 Hours.

This function is supported by the Planning workstation server jointly with other subsystem hard-
ware including Science Processing's , DBMS/Queuing server workstation, and the science proces-
sors as well. The RMA requirement is readily met (reference: Availability Models / Predictions;
515-CD-001-003). However, the DBMS server function is critical and should have additional
backup capability.

The basic approach to Planning subsystem failover and recovery strategy for Release A is to pro-
vide functionality within the DBMS server for the functional equivalent of RAID disk that pro-
vides a mirroring capability. In the case of CPU or power supply failure, a sparing philosophy will
be used., which can easily meet the MDT of less than 4 hours

This section describes failure and recovery for the Sybase SQL Server for the Planning and Data
Processing Subsystems (PDPS). The Sybase Server will consist of databases for Planning and Da-
tabase Processing, including AutoSys and AutoExpert. This paper will also be used to determine
if additional software is required for failure and recovery and may used to supplement DID 305
failure and recovery material.

This section will address failure and recovery for both system disk crashes and CPU failure.

Planning Server Architecture The PLNHW server architecture is based primaily on providing the
facilities with which a common RDBMS for planning and queuing can be serviced. Whether or
not this requires one physical server depends upon the RMA requirements, the timeframe of the
implementation and the DAAC specific performance required (a function of the routine processing
allocated to each site in question). Note that Figure 5-3 assumes an environment with two physical
servers. This decision is a DAAC specific one as stressed before.

For purposes of describing the generic PLNHW architecture, it is assumed that there are two phys-
ical servers: one being the Planning Server and the second being the Production Queuing Server
(actually allocated within the SPRHW HWCI). These servers act as the primary and secondary
unit, with the Planning Server acting as primary. Both physical servers act as the DBMS Server.
In the event the primary fails the secondary can take over with little or no manual intervention.
The secondary assumes the role of the primary and all work is performed using the secondary serv-
er until the primary is restored.

Depending upon DAAC specific performance requirements, the configuration could be a primary
and secondary CPU within a single server, e.g. SMP. The feasibility of an SMP configuration is
currently being investigated.

Disk Mirroring With respect to disk failure recovery, the server(s) will have multiple physical
disks to service safe storage of the production DBMS. The disk will be grouped into two logical
sets and the second set will mirror the first set. There are two basic strategies that can be employed:

(1) Hardware supported -- physical cross strapping of disk between two servers, with one
acting as the primary, (hardware supported) and

5-9 305-CD-010-001

(2) Primarily software based -- disk mirroring between a primary and a secondary server
through the use of protocols and LAN networks.

Figure 5-3 depicts a primary and mirrored disk. Given that the RMA requirements, for the Plan-
ning and Processing areas, as mentioned above, are not severe, it is likely that the method em-
ployed will not be hardware based, but will be based on the second strategy given above. This
method, since it is primarily software based (other than the requirements for multiple disk units),
is only briefly outlined here.

Sybase mirroring provides a form of redundancy to protect against hardware failure and to provide
a degree of fault tolerance. Mirroring is the capability to maintain a replicate of all data stored on
a database device. Disk mirroring can provide non-stop recovery in the event of disk failure. A
Sybase procedure can be executed to cause a SQL Server database device to be duplicated, i.e. all
writes to the device are copied to a separate physical device. If one of the devices fail, the other
contains an up-to date copy of all transactions. Mirroring selected devices minimizes disk resourc-
es and performance degradation but requires manual intervention to restore the unmirrored devices
from backup for hardware failure situations. Mirroring all devices such as the master device, user
databases, and transaction logs provides a non-stop recovery from hardware failure, but provides
a slight degradation in performance. In the event of media failure, the mirror can take over, typi-
cally without any downtime. When the damaged device is repaired or replaced, it is synchronized
with the undamaged copy.

Figure 5-3. Primary and Secondary Server Concept Overview

•
Database Logic

DML RDBMS

PRIMARY SERVER

DBMS Data Mirror of
DBMS Data

Database Logic

DML RDBMS

SECONDARY SERVER

5-10 305-CD-010-001

In figure 5-3, gray areas indicate the primary server and the primary disk. The primary server
writes to both the primary disk and the mirrored disk to guarantee continuous operation in the event
of a failure. The primary disk is also used for read operations. The secondary server will only ac-
cess the disks if the primary server fails. If the event that the secondary takes over, it will read and
write to the primary disk and write to the mirrored disk.

5.4 Pertinent References
1.. Planning Subsystem Database Size Estimate for the ECS Project, Technical Paper, February
1995, 440-TP-012--12

2. Addendum - Planning Subsystem Database Size Estimate, Spreadsheet Analysis, Unpublished

A-1 305-CD-010-001

Appendix A. Requirements Trace

The Interim Release 1 (Ir1) and TRMM Development (Release A) Level 4 requirements listed in
the following table reflect the state of the RTM database on July 15, 1995.

Table A-1. Requirements Trace
L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

S-PLS-00005 The PLANG CI shall accept priority Production
Requests for the generation of specific Data
Products.

PlPlanningUserUI;
PlProductionRequest;
PlDataTypeCatalogue;

S-PLS-00010 The PLANG CI shall accept Production Requests
for specific Data Products with associated time
windows that are to be routinely generated.

PlPlanningUserUI;
PlProductionRequest;
PlDataTypeCatalogue;

S-PLS-00020 The PLANG CI shall generate Data Processing
Requests from Production Requests.

PlPlanningUserUI;
PlProductionRequest;
PlDataTypeCatalogue;
PlDataType; PlPGE; PlDPR;
PlDataTypeRqt; PlInputDataType;
PlDataGranule;

S-PLS-00040 The PLANG CI shall reject a Production Request if
an invalid product identifier has been specified.

PlPlanningUserUI;
PlProductionRequest;
PlDataTypeCatalogue;

S-PLS-00050 The PLANG CI shall reject a Production Request if
an unauthorized User Identifier is specified.

PlPlanningUserUI;
PlProductionRequest;
PlDataTypeCatalogue; PlUser;

S-PLS-00060 The PLANG CI shall support the capability to
display a response message to the operations staff,
indicating the acceptance / rejection status of
Production Requests and the reasons for rejection
(if applicable).

PlProductionRequest;
PlPlanningUserUI;

S-PLS-00180 The PLANG CI shall validate updates
(modifications / cancellations) to existing
Production Requests.

PlPlanningUserUI;
PlProductionRequest;
PlDataTypeCatalogue;
PlDataType; PlPGE; PlDPR;
PlDataTypeRqt; PlInputDataType;
PlDataGranule;

S-PLS-00200 The PLANG CI shall accept updates (modifications
/ cancellations) to Production Requests entered by
the operations staff.

PlPlanningUserUI;
PlProductionRequest;
PlDataTypeCatalogue;
PlDataType; PlPGE; PlDPR;
PlDataTypeRqt; PlInputDataType;
PlDataGranule;

A-2 305-CD-010-001

S-PLS-00220 The PLANG CI shall support the display of a
response message to the operations staff,
indicating the acceptance /rejection status of
updates to a Production Request.

PlPlanningUserUI;

S-PLS-00260 For each Production Request being processed, the
PLANG CI shall interact with the appropriate
instance of the SDSRV CI to determine whether
the Granules needed to satisfy the request exist.

PlPlanningUserUI;
PlProductionRequest;
PlDataType; DsQuery;
DsESDTReferenceCollector;
DsESDTReference;

S-PLS-00300 The PLANG CI shall accept ground events to
describe the allocation of data processing
resources to non-production tasks.

PlPlanningWorkbenchUI;
PlResourceManagersUI;
PlGroundEvents; PlGroundEvent;

S-PLS-00310 The PLANG CI specification of ground events shall
include priorities, dependencies, and estimated
duration.

PlPlanningWorkbenchUI;
PlResourceManagersUI;
PlGroundEvents; PlGroundEvent;

S-PLS-00400 The PLANG CI shall maintain Product Generation
Executives (PGEs) information that identifies the
Science Software, the order of execution, the
conditions for execution, the processing
environment, and the input / output data types and
locations.

PlPGEProfile; PlPGE;
PlResourceRequirements;
PlUserParameters;
PlDataTypeRequirement;
PlDataType; DpPGEProfileEditor;

S-PLS-00410 The PLANG CI shall support the capability to
display (via GUI) a list of PGEs maintained in its
PGE information database.

PlPGEProfile;
DpPGEProfileEditor;

S-PLS-00420 The PLANG CI shall support the capability to
browse (via GUI) the information maintained on a
specific PGE.

PlPGEProfile;
DpPGEProfileEditor;

S-PLS-00430 The PLANG CI shall support the capability to (a)
allow (authorized) operations staff updates (enter /
modify / delete) of PGE information in the Planning
PGE information database, (b) maintain a record of
updates made.

PlPGEProfile;
DpPGEProfileEditor;

S-PLS-00440 The PLANG CI shall maintain Production Rules that
define the production strategy (rules defining
production priorities and preferences) to be used
when preparing a Production Plan.

PlProductionRequest; PlDPR;

S-PLS-00450 The PLANG CI shall support the capability that
allows the operations staff to update (enter/ modify/
delete) the Production Rules (via GUI).

PlPlanningUserUI;
PlProductionRequest; PlDPR

S-PLS-00460 The PLANG CI shall maintain lists of Granules
needed to satisfy Production Requests.

PlProductionRequest;
PlDataType; PlPGE; PlDPR;
PlDataTypeRqt; PlDataGranule;

S-PLS-00470 The PLANG CI shall maintain information on the
following: a. current processing status of all
Production Requests received, b. current
processing status of all Data Processing Requests
generated, c. detected processing fault data.

PlProductionRequest;
PlDataTypeCatalogue;
PlDataType; PlPGE; PlDPR;
PlDataTypeRqt; PlDataGranule;
MsEvent

Table A-1. Requirements Trace
L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

A-3 305-CD-010-001

S-PLS-00475 The PLANG CI shall maintain information on all
Candidate and Active Plans generated.

PlPlanningWorkbenchUI; PlPlan;
PlGroundEvents; PlGroundEvent;
PlGroundActivity; PlDPRs;
PLDPR; PlPGEActivity;
PlResourceManager;
PlActivePlan;

S-PLS-00490 The PLANG CI shall maintain Planning system fault
data using fault isolation tools provided by the LSM.

MsEvent

S-PLS-00670 The PLANG CI shall provide (to the operations
staff) the capability to enter, via GUI, "plan creation
requests" that initiate creation of Candidate Plans.

PlPlanningWorkbenchUI; PlPlan;

S-PLS-00680 The PLANG CI shall provide the capability to
generate multiple Candidate Plans.

PlPlanningWorkbenchUI; PlPlan;

S-PLS-00690 The PLANG CI shall create a Candidate Plan
specifying a timeline for PGE execution that will
satisfy Production Requests for Standard Products.

PlPlanningWorkbenchUI; PlPlan;
PlGroundEvents; PlGroundEvent;
PlGroundActivity; PlDPRs;
PLDPR; PlPGEActivity;
PlProductionRequest;

S-PLS-00710 The PLANG CI shall create a Candidate Plan based
on the following:
1. Outstanding production requests, their priorities
and estimated runtimes,
2. Ground events, their priority and estimated
duration,
3. Planning production rules,
4. Mutual PGE accessibility of shared data,
5. Completion notification status messages from
Data Processing.

PlPlanningWorkbenchUI; PlPlan;
PlProductionRequest;
PlGroundEvents; PlGroundEvent;
PlGroundActivity; PlDPRs;
PLDPR; PlPGEActivity;
PlResourceManager;

S-PLS-00730 The PLANG CI shall have the capability to plan
algorithm and calibration coefficient test time in the
test environment.

PlPlanningWorkbenchUI; PlPlan;
PlGroundEvent;

S-PLS-00740 The PLANG CI shall have the capability to schedule
algorithm test Data Processing Requests that do
not interfere with the operational production
environment.

PlPlanningWorkbenchUI; PlPlan;
PlResourceRequirement; PlDPRs;
PLDPR; PlPGEActivity;
PlResourceManager;

S-PLS-00760 The PLANG CI shall send electronic copies of the
Candidate Plans and corresponding metadata to
the designated local Data Server for storage and
distribution.

PlPlanningWorkbenchUI; PlPlan;
PlPublishedPlan;
PlPlanMetadataFile;
PlPlanASCIIReportFile;
PlPlanBinaryReportFile;

S-PLS-00770 The PLANG CI shall provide (to the operations
staff) the capability to enter, via GUI, a "Plan
cancellation" request, indicating cancellation of the
currently Active Plan.

PlPlanningWorkbenchUI;
PlActivePlan; PlPGEActivities;
PlPGEActivity; PlDPR;
DpPrScheduler;

Table A-1. Requirements Trace
L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

A-4 305-CD-010-001

S-PLS-00780 The PLANG CI shall generate Data Processing
Request cancellations against previously submitted
Data Processing Requests (if so directed by the
operations staff), or upon activation of a new plan
that no longer requires those requests.

PlPlanningWorkbenchUI; PlPlan;
PlPGEActivity; PLDPR;
DpPrScheduler;

S-PLS-00790 The PLANG CI shall send a Data Processing
Request cancellation to the instance of the PRONG
CI that received the original Data Processing
Request.

PlPlanningWorkbenchUI; PlPlan;
PlDPRs; PLDPR;

S-PLS-00800 The PLANG CI shall provide to the operations staff
the capability to enter, via GUI, a "plan activation
request" that identifies which Candidate Plan is to
be activated.

PlPlanningWorkbenchUI; PlPlan;
PlDPRs; PLDPR; PlPGEActivity;
PlResourceManager;

S-PLS-00825 The PLANG CI shall have the capability to identify
all available input data (as specified in the Active
Plan) that is currently awaiting quality assurance
information.

See Note 1

S-PLS-00827 The PLANG CI shall update the quality assurance
status of input data (if applicable) to reflect an
expired QA timeout period if its quality assurance
information has not been received within specified
time periods.

See Note 1

S-PLS-00830 The PLANG CI shall send Data Processing
Requests (specified in an Active Plan) to a
processing resource that can perform the
processing, if the following applies:
1 All required input data (including metadata)
is available,

PlSubscriptionManager; PlDPR;
PlDataGranule; DpJobScheduler;

S-PLS-00840 The PLANG CI shall send electronic copies of the
Active Plan and corresponding metadata to the
designated local Data Server for storage and
distribution.

PlPlanningWorkbenchUI; PlPlan;
PlPublishedPlan;
PlPlanMetadataFile;
PlPlanASCIIReportFile;
PlPlanBinaryReportFile;

S-PLS-00870 The operations staff shall manually submit Data
Subscriptions for PGE input data to the appropriate
Data Servers.

PlSubscriptionSubmitIF;
PlDataTypes; PlDataType;
IoAdAdvertisingSrv_C;
IoAdServiceCollection_C;
IoAdServiceAdvertisement_C;
DsClSubscription

S-PLS-00872 The operations staff shall manually submit Data
Subscriptions for L0 data to the Ingest Subsystem.

PlSubscriptionSubmitIF;
PlDataTypes; PlDataType;
AdCollection; Advertisement;
DsClSubscription

S-PLS-00875 The PLANG CI shall receive Subscription Notices
indicating availability of subscribed data.

EcMsgPsngCtrl; PlDataTypes;
PlDataGranules; PlDataGranule;
GlUR; DsClESDTReference;

Table A-1. Requirements Trace
L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

A-5 305-CD-010-001

S-PLS-00880 The operations staff shall manually cancel Data
Subscriptions for input data to PGEs that are no
longer used, once they determine that the input
data is not required by any other PGE.

PlSubscriptionSubmitIF;
PlDataTypes; PlDataType;
AdCollection; Advertisement;
DsClSubscription;

S-PLS-01000 The PLANG CI shall receive a Data Processing
Request Response message, acknowledging
acceptance of the Data Processing Request
forwarded to the PRONG CI.

PlDPR; PlActivities;
DpJobScheduler;

S-PLS-01010 The PLANG CI shall receive "Complete
Notification" status messages, indicating the
completion status of Data Processing Requests.

PlDPR; PlActivities;
DpJobScheduler;

S-PLS-01020 The PLANG CI shall receive responses to Data
Processing Request cancellations indicating the
completion status of the cancellation requests.

PlDPR; PlActivities;
DpJobScheduler;

S-PLS-01030 The PLANG CI shall update the Active Plan with the
current processing status of each Data Processing
Request listed.

PlPlanningWorkbenchUI; PlPlan;
PlPGEActivities; PlDPR;
PlActivities; DpJobScheduler;

S-PLS-01040 The PLANG CI shall send the current processing
status of Production Requests (for On-Demand
Data Products) to the originating Data Server.

See Note 1

S-PLS-01200 The PLANG CI shall provide the operations staff
with the capability to perform the following on-line
functions, via GUI:
a. Entry of product requests for standard products,
b. Query / update / cancellation of production
requests for standard products,
c. Query status of production requests,
d. Query / update of production rules and PGE
information,
e. Entry of plan creation requests,
f. Entry of plan activation requests,
g. Entry of plan cancellation requests,
h. Query candidate / active plans and
corresponding status,
i. Entry of requests for processing log reports /
production and data processing request status
reports / resource utilization reports / planning
workload status reports / management reports,
j. Entry of ground events,
k. Query / update of ground events.

PlPlanningWorkbenchUI;

S-PLS-01220 The PLANG CI shall have the capability to accept a
request from the operations staff for scheduling
algorithm and calibration coefficient test time in the
test environment.

PlPlanningWorkbenchUI; PlPlan;
PlGroudEvent;

S-PLS-01240 The PLANG CI shall support the display (via GUI)
of Planning hardware and software detected faults
to the operations staff.

MSS COTS

Table A-1. Requirements Trace
L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

A-6 305-CD-010-001

S-PLS-01245 The PLANG CI shall provide capability to make
available (for review by all affected instrument
teams) information related to product generation
delays and production faults.

PlPlanningWorkbenchUI; PlPlan;
PlPublishedPlan;
PlPlanMetadataFile;
PlPlanASCIIReportFile;
PlPlanBinaryReportFile;

S-PLS-01250 The PLANG CI shall record detected hardware and
software errors in a Planning processing log.

MsEvent

S-PLS-01260 The PLANG CI shall support the capability to
generate Planning processing log reports
(periodically and on request) for a specified time
period.

DPS COTS

S-PLS-01270 The PLANG CI shall support the generation of Data
Processing Request Status reports (upon request)
that will provide Data Processing Request
information based on the report generation
parameters and the time period specified.

PlPlanningWorkbenchUI; PlPlan;
PlDPRs; PLDPR;

S-PLS-01280 The PLANG CI shall support the generation of
Production Request Status reports (upon request)
that will provide Production Request information
based on the report generation parameters and the
time period specified.

PlPlanningUserUI;
PlProductionRequest;
PlDataTypeCatalogue;
PlDataType; PlPGE; PlDPR;
PlDataTypeRqt; PlInputDataType;
PlDataGranule;

S-PLS-01290 The PLANG CI shall support the generation of
resource utilization reports (periodically and on
request).

MSS COTS

S-PLS-01300 The PLANG CI shall support the capability to
generate PLANG CI processing workload and
processing turnaround time reports (periodically
and on request).

MSS COTS

S-PLS-01320 The PLANG CI shall make all reports generated
available for review.

MSS COTS

S-PLS-01330 The PLANG CI shall restrict the functions available
to operators depending on operations role, (e.g., to
permit the resource manager role to enter ground
events, but to restrict that role from being able to
enter production requests).

PlApplication;
PlPlResourceManagersUI;
PlPlanningWorkbenchUI;
PlProducitonRequestUI; PlUser;

S-PLS-01400 The PLANG CI shall accept the fault isolation tools
for the PLANG CI.

PLANG CI;

S-PLS-01410 The PLANG CI shall forward faults detected in the
Planning system to MSS.

PLANG CI;

S-PLS-01430 The PLANG CI shall send to MSS product
scheduling, processing status and data quality
information.

PLANG CI;

S-PLS-01440 The PLANG CI shall collect Fault Management
Data and provide it to the MSS.

PLANG CI;

Table A-1. Requirements Trace
L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

A-7 305-CD-010-001

S-PLS-01450 The PLANG CI shall collect Configuration
Management Data and provide it to the MSS.

PLANG CI;

S-PLS-01470 The PLANG CI shall collect Accountability
Management Data and provide it to the MSS.

PLANG CI;

S-PLS-01480 The PLANG CI shall collect Performance
Management Data and provide it to the MSS.

PLANG CI;

S-PLS-01490 The PLANG CI shall collect Security Management
Data and provide it to the MSS.

PLANG CI;

S-PLS-01500 The PLANG CI shall collect Scheduling
Management Data and provide it to the MSS.

PLANG CI;

S-PLS-01600 The PLANG CI design and implementation shall
have the flexibility to accommodate Planning
expansion up to a factor of 3 in its capacity with no
changes to its design, and up to a factor of 10
without major changes to its design. Such
expansion in capacity or capability shall be
transparent to existing algorithms or product
specifications.

PLANG CI; PLNHW CI

S-PLS-01610 The PLANG CI shall be developed with
configuration controlled APIs that will be capable of
supporting development and integration of new
algorithms developed at DAAC to support DAAC
value-added production.

PLANG CI;

S-PLS-60010 The PLNHW CI shall support the hardware
resource requirements of the PLANG CI and its
interface requirements with the operations staff
performing planning functions.

PLNHW CI;

S-PLS-60150 The PLNHW CI shall have provision for
Initialization, Recovery, and an orderly shutdown.

PLNHW CI;

S-PLS-60160 Startup and initialization of the PLNHW CI shall be
completed within 30 minutes (TBR).

PLNHW CI;

S-PLS-60170 Shutdown of the PLNHW CI shall be completed
within 30 minutes (TBR).

PLNHW CI;

S-PLS-60180 The PLNHW CI shall have provision for a fault
detection/ fault isolation capability without
interfering with operations.

PLNHW CI;

S-PLS-60190 The PLNHW CI shall have a status monitoring
capability.

PLNHW CI;

S-PLS-60320 The PLNHW CI shall support TBD transactions per
day, as specified for each release and
corresponding DAAC sites (TBR).

PLNHW CI;

S-PLS-60330 The PLNHW CI shall provide local storage of TBD
GB (TBR).

PLNHW CI;

S-PLS-60340 The PLNHW CI shall provide a DBMS storage of
TBD GB (TBR).

PLNHW CI;

S-PLS-60410 The PLNHW CI shall be capable of operating in a
24 hour per day, 7 days a week mode.

PLNHW CI;

Table A-1. Requirements Trace
L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

A-8 305-CD-010-001

S-PLS-60420 PLNHW CI functions shall have an operational
availability of TBD as a minimum and Mean Down
Time (MDT) of TBD hours .

PLNHW CI;

S-PLS-60450 The PLNHW CI shall be capable of supporting
system maintenance without impact to normal
operations.

PLNHW CI;

S-PLS-60610 The PLNHW CI shall have provision for interfacing
with one or more Local Area Networks (LANs).

PLNHW CI;

S-PLS-60620 The PLNHW CI shall have provision for interfacing
with the Data Server subsystem.

PLNHW CI;

S-PLS-60625 The PLNHW CI shall have provision for interfacing
with the Processing subsystem.

PLNHW CI;

S-PLS-60630 The PLNHW CI shall provide maintenance
interfaces to support the function of System
Maintenance.

PLNHW CI;

S-PLS-60640 The PLNHW CI shall provide operations interfaces
to support the function of System Maintenance.

PLNHW CI;

S-PLS-60810 The electrical power requirements for PLNHW CI
equipment shall be in accordance with the ECS
Facilities Plan (DID 302/DV2).

PLNHW CI;

S-PLS-60840 The air conditioning requirements for PLNHW CI
equipment shall be in accordance with the ECS
Facilities Plan (DID 302/DV2).

PLNHW CI;

S-PLS-60850 The grounding requirements for PLNHW CI
equipment shall be in accordance with ECS
Facilities Plan (DID 302/DV2).

PLNHW CI;

S-PLS-60860 The fire alarm requirements for PLNHW CI
equipment shall be in accordance with ECS
Facilities Plan (DID 302/DV2).

PLNHW CI;

S-PLS-60870 The acoustical requirements for PLNHW CI
equipment shall be in accordance with ECS
Facilities Plan (DID 302/DV2).

PLNHW CI;

S-PLS-60880 The physical interface requirements between
PLNHW CI equipment and the facility shall be in
accordance with ECS Facilities Plan (DID 302/
DV2).

PLNHW CI;

S-PLS-60890 The footprint size and the physical layout of
PLNHW CI equipment shall be in accordance with
the ECS Facilities Plan (DID 302/DV2).

PLNHW CI;

S-PLS-61010 The PLNHW CI shall support test activities
throughout the development phase.

PLNHW CI;

S-PLS-61020 The following testing shall be performed on the
PLNHW CI:

PLNHW CI;

S-PLS-61040 Internal testing shall be performed on the PLNHW
CI which includes tests of hardware functions, and
integration testing with other SDPS subsystems.

PLNHW CI;

Table A-1. Requirements Trace
L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

A-9 305-CD-010-001

Note 1: The release allocation of this L4 requirement is the subject of a CCR that was pending at
the time of publication of this document.

S-PLS-61050 Internal testing shall be performed on the PLNHW
CI to verify the internal interfaces to the Data
Server, and Ingest subsystems.

PLNHW CI;

S-PLS-61080 The PLNHW CI shall be capable of supporting end-
to-end test and verification activities of the EOS
program including during the pre-launch,
spacecraft verification, and instrument verification
phases.

PLNHW CI;

S-PLS-61150 The PLNHW CI shall be capable of being monitored
during testing.

PLNHW CI;

S-PLS-61210 The operating system for each Unix platform in the
PLNHW CI shall conform to the POSIX.2 standard.

PLNHW CI;

S-PLS-61220 Each PLNHW CI POSIX.2 compliant platform shall
have the following utilities installed at a minimum:
perl, emacs, gzip, tar, imake, prof, gprof, nm.

PLNHW CI;

S-PLS-61230 Each PLNHW CI POSIX.2 compliant platform shall
have the following POSIX.2 user Portability Utilities
installed at a minimum: man, vi.

PLNHW CI;

S-PLS-61240 Each PLNHW CI platform shall have the following
POSIX.2 Software Development utilities installed:
make, imake.

PLNHW CI;

S-PLS-61260 Each PLNHW CI POSIX.2 compliant platform shall
have the following Unix shells installed at a
minimum: C shell, Bourne shell, Korn shell.

PLNHW CI;

S-PLS-61350 Each PLNHW CI POSIX.2 compliant platform shall
have a screen capture utility.

PLNHW CI;

S-PLS-61530 The PLNHW CI shall contain the processing,
storage, and interface resources to support the
planning functions for the TRMM mission
instruments of CERES and LIS.

PLNHW CI;

S-PLS-61610 Each PLNHW CI workstation platform shall provide
a hard media device with a capacity of TBD GB for
software and system maintenance and upgrade
support.

PLNHW CI;

Table A-1. Requirements Trace
L4 Rqmt ID L4 Requirement Text Object Class, CSC, or CI

A-10 305-CD-010-001

This page intentionally left blank.

AB-1 305-CD-010-001

Abbreviations and Acronyms

ADSRV advertising service CSCI

AHWGP Ad Hoc Working Group on Production

AI&T algorithm integration and test

AITTL algorithm integration and test tools (CSCI)

AM-1 EOS AM Project (morning spacecraft series)

ASCII American Standard Code for Information Exchange Interchange

CASE computer aided software engineering

CDR Critical Design Review

CERES Clouds and Earth's Radiant Energy System

CI configuration item

COTS commercial off-the-shelf (hardware or software)

CPU central processing unit

CSC computer software component

CSCI computer science configuration item

CSMS Communications and Systems Management Segment (ECS)

DAAC distributed active archive center

DBMS database management system

DDSRV document data server

DEV developed code

DPR data processing request

ECS EOSDIS Core System

EDF ECS development facility

ESDT Earth science data types

ESN EOSDIS Science Network (ECS)

FDDI fiber distributed data interface

GB gigabyte (109)

GC global change

GUI graphic user interface

HCL Hughes class library

HTML Hyper-Text Markup Language

HWCI hardware configuration item

AB-2 305-CD-010-001

I/O input/output

L0 Level 0

LAN local area network

LaRC Langley Research Center (DAAC)

MB megabyte (106)

MSFC Marshall Space Flight Center (DAAC)

MSS Management Subsystem

NOAA National Oceanic and Atmospheric Administration

OO object oriented

PDPS planning and data processing system

PDR Preliminary Design Review

PGE Product Generation Executive

PLANG production planning CSCI

PR production request

RAID redundant array of inexpensive disks

RDBMS relational database management system

RMA reliability, maintainability, availability

SCSI Small Computer System Interface

SDPF Sensor Data Processing Facility (GSFC)

SDPS Science Data Processing Segment (ECS)

TRMM Tropical Rainfall Measuring Mission (joint US-Japan)

U/I user interface

UNIX POSIX operating system

WAIS Wide Area Information Server

WWW World Wide Web

	1. Introduction
	1.1 Identification
	1.2 Purpose and Scope
	1.3 Status and Schedule
	1.4 Organization

	2. Related Documentation
	2.1 Parent Documents
	2.2 Applicable Documents

	3. Subsystem Overview
	3.1 Context
	Figure 3.1-1. Context Diagram

	3.2 Subsystem Overview
	3.2.1 Use of COTS within the Planning and Data Pro...
	Figure 3.2-1. Basic Capability of Autosys
	Figure 3.2-2. Graphical Schedule displays provided...

	3.2.2 Summary of Changes to the Planning Subsystem...
	3.2.3 Key Design Drivers
	3.2.4 Performance
	3.2.5 Subsystem Structure
	Figure 3.1-1. Context Diagram

	4. PLANG - Production Planning CSCI
	4.1 CSCI Overview
	Figure 4.1-1. CSCI Overview
	4.1.1 PDPS Database
	4.1.2 Production Request Editor
	4.1.3 Production Planning Workbench
	4.1.4 Planning Subscription Editor
	4.1.5 Subscription Manager

	4.2 CSCI Context
	Figure 4.2-1. CSCI Event Flow Context Diagram

	4.3 CSCI Object Model
	4.3.1 PGE Profile View
	Figure 4.3-1. PGE Profile Object Model

	4.3.2 Production Request View
	Figure 4.3-2. Production Request Object Model

	4.3.3 Subscription Submission View
	Figure 4.3-3. Subscription Submission Object Model

	4.3.4 Production Planning View
	Figure 4.3-4. Production Planning Object Model

	4.3.5 Resource Management View
	Figure 4.3-5. Resource Management Object Model

	4.3.6 Plan Activation View
	Figure 4.3-6. Plan Activation Object Model

	4.4 Class Descriptions
	4.4.1 DpPrScheduler Class
	4.4.2 DsClESDTReference Class
	4.4.3 DsClESDTReferenceCollector Class
	Figure 4.3-7. Subscription Manager Object Model
	Figure 4.3-8. DBMS Proxy Agent Object Model

	4.4.4 DsClQuery Class
	4.4.5 DsClSubscription Class
	4.4.6 DsCtClient Class
	4.4.7 DsCtCommand Class
	4.4.8 DsCtRequest Class
	4.4.9 EcMpMsgPsngCtrl Class
	4.4.10 EcMpMsgQueueIn Class
	4.4.11 GlUR Class
	4.4.12 IoAdAdvertisingSrv_C Class
	4.4.13 IoAdServiceAdvertisement Class
	4.4.14 IoAdServiceCollection_C Class
	4.4.15 MsDAAC Class
	4.4.16 MsEvent Class
	4.4.17 MsManager Class
	4.4.18 MsMgCallbacks Class
	4.4.19 MsUsProfile Class
	4.4.20 PlActivePlan Class
	4.4.21 PlActivities Class
	4.4.22 PlActivity Class
	4.4.23 PlAddressFile Class
	4.4.24 PlApplication Class
	4.4.25 PlComputer Class
	4.4.26 PlDBMSProxyAgent Class
	4.4.27 PlDBMSProxyAgentCallbacks Class
	4.4.28 PlDPR Class
	4.4.29 PlDPRs Class
	4.4.30 PlDataGranule Class
	4.4.31 PlDataGranule Class
	4.4.32 PlDataScheduled Class
	4.4.33 PlDataSource Class
	4.4.34 PlDataType Class
	4.4.35 PlDataTypeCatalogue Class
	4.4.36 PlDataTypeReq Class
	4.4.37 PlDataTypes Class
	4.4.38 PlDiskPartition Class
	4.4.39 PlFOSPrecictedArrival Class
	4.4.40 PlGroundActivity Class
	4.4.41 PlGroundEvent Class
	4.4.42 PlGroundEvents Class
	4.4.43 PlOutputYield Class
	4.4.44 PlPGE Class
	4.4.45 PlPGEActivity Class
	4.4.46 PlPGEProfile Class
	4.4.47 PlPerformance Class
	4.4.48 PlPlan Class
	4.4.49 PlPlanASCIIReportFile Class
	4.4.50 PlPlanBinaryReportFile Class
	4.4.51PlPlanGenerationUI Class
	4.4.52 PlPlanMetadataFile Class
	4.4.53 PlPlanningWorkbenchUI Class
	4.4.54 PlProductionPlannersUI Class
	4.4.55 PlProductionRequest Class
	4.4.56 PlProductionRequestUI Class
	4.4.57 PlPublishScript Class
	4.4.58 PlPublishedPlan Class
	4.4.59 PlResource Class
	4.4.60 PlResourceConfigeration Class
	4.4.61 PlResourceManager Class
	4.4.62 PlResourceManagersUI Class
	4.4.63PlResourceRequirement Class
	4.4.64 PlRoutineArrival Class
	4.4.65 PlScheduledArrival Class
	4.4.66 PlString Class
	4.4.67 PlSubscriptionManager Class
	4.4.68 PlSubscriptionManagerCallbacks Class
	4.4.69 PlSubscriptionSubmitIF Class
	4.4.70 PlTimeLineDisplay Class
	4.4.71 PlTimeScheduled Class
	4.4.72 PlUser Class
	4.4.73 PlUserParameters Class

	4.5 PLANG Dynamic Model
	4.5.1 PGE Profile
	Figure 4.5-1. PGE Profile Entry Event Trace
	Figure 4.5-2. PGE Profile Modification Event Trace...
	Figure 4.5-3. PGE Profile Deletion Event Trace

	4.5.2 Production Requests
	Figure 4.5-4. Production Request Entry Event Trace
	Figure 4.5-5. Production Request Deletion Event Trace

	4.5.3 Data Availability Scenario
	Figure 4.5-6. Data Availability Event Trace

	4.5.4 Subscription Submission Scenario
	Figure 4.5-7. Subscription Submission Event Trace
	Figure 4.5-8. Subscription Withdrawl Event Trace

	4.5.5 Subscription Withdrawal Scenario
	4.5.6 Ground Event Scenario
	Figure 4.5-9. Ground Event Entry Event Trace

	4.5.7 Plan Creation Scenario
	Figure 4.5-10. Plan Creation Scenario

	4.5.8 Deleting a Plan Scenario
	4.5.9 Publishing a Plan Scenario
	Figure 4.5-11. Plan Publication Event Trace

	4.5.10 Building the Resource Configuration Scenari...
	Figure 4.5-12. Resource Configuration Event Trace....

	4.5.11 Plan Activation Scenario
	Figure 4.5-13. Plan Activation Event Trace

	4.5.12 Cancelling a Plan Scenario
	Figure 4.5-14. Plan Cancellation Event Trace

	4.5.13 Statusing a Plan Scenario
	Figure 4.5-15. Plan Statusing Event Trace

	4.5.14 Subscription Manager Startup Scenario
	Figure 4.5-16. Subscription Manager Event Trace

	4.5.15 Subscription Notification Scenario
	Figure 4.5-17. Subscription Notification Event Trace

	4.5.16 Subscription Manager Shutdown Scenario
	Figure 4.5-18. Subscription Manager Shutdown Event Trace

	4.5.17 User Logon and Authentication

	4.6 CSCI Structure
	4.6.1 Planning Subscription Editor CSC
	4.6.2 Production Request Editor CSC
	4.6.3 Subscription Manager CSC
	4.6.4 Production Planning Workbench CSC
	4.6.5 Planning Object Library
	Figure 4.6-1. Delphi Resource Model
	Figure 4.6-2. Delphi Scheduler Model

	4.6.6 PDPS Database CSC

	4.7 PLANG CSCI Management and Operation
	4.7.1 PLANG CSCI Operation
	Figure 4.6-3. Database Interface Classes
	Figure 4.6-4. Database Interface Object Model

	4.7.2 System Management Strategy
	4.7.3 Operator Interfaces
	4.7.4 Reports

	5. Planning Subsystem Hardware CI
	5.1 Hardware Design Drivers
	5.1.1 Key Trade-Off Studies and Prototypes
	5.1.2 Sizing and Performance Analysis
	5.1.3 Scalability, Evolvability, Migration to Rele...

	5.2 HWCI Structure
	Figure 5-1. Planning Block Diagram
	5.2.1 Connectivity
	Figure 5-2. Planning Generic Network Connectivity

	5.2.2 HWCI Components

	5.3 Failover and Recovery Strategy
	Figure 5-3. Primary and Secondary Server Concept O...

	5.4 Pertinent References

	Appendix A. Requirements Trace
	Abbreviations and Acronyms

